Skip to main content
Erschienen in: Die Diabetologie 7/2022

13.09.2022 | Insuline | Leitthema

Stammzellen für die Wiederherstellung der endogenen Insulinsekretion

verfasst von: Dr. rer. nat. Günter Päth, PD Dr. med. Katharina Laubner, Univ. Prof. Dr. med. Jochen Seufert

Erschienen in: Die Diabetologie | Ausgabe 7/2022

Einloggen, um Zugang zu erhalten

Zusammenfassung

Trotz moderner Insulintherapien gibt es Menschen, deren Diabetes nicht gut eingestellt ist. Die Betroffenen leiden unter hypoglykämischen Episoden und haben ein hohes Risiko, diabetische Spätkomplikationen zu entwickeln. Die Wiederherstellung der körpereigenen Insulinproduktion mittels Transplantation von Pankreasinseln ist daher ein wichtiges klinisches Ziel. Die notwendige Immunsuppression und die begrenzte Verfügbarkeit von geeignetem menschlichem Spendermaterial schränken jedoch deren breite Anwendung ein. In der Diabetesforschung wird daher seit vielen Jahren versucht, insulinproduzierende Zellen aus Stammzellen (SZ) zu erzeugen, um nicht mehr auf Spenderorgane angewiesen zu sein. Zu diesem Zweck können embryonale (ESZ) sowie induzierte pluripotente Stammzellen (iPSZ) verwendet werden. Letztere werden aus adulten Zellen reprogrammiert und sind daher ethisch unbedenklich. Im Prinzip sind die Gewinnung, Vermehrung und Differenzierung von ESZ und iPSZ bereits heute in großem Umfang möglich. Allerdings gibt es auch Probleme, z. B. die Tumorigenität von undifferenziert transplantierten SZ oder nicht vollständig reprogrammierten iPSZ. Während an diesen und anderen Schwierigkeiten noch geforscht wird, ermöglichen iPSZ bereits die Erzeugung patienten- und krankheitsspezifischer Zelllinien. Im vorliegenden Beitrag werden der biologische Hintergrund, das daraus resultierende klinische Potenzial von ESC und iPSZ sowie der aktuelle Stand der klinischen Stammzelltherapie des Diabetes mellitus beleuchtet.
Literatur
1.
Zurück zum Zitat Agulnick AD, Ambruzs DM, Moorman MA et al (2015) Insulin-producing endocrine cells differentiated in vitro from human embryonic stem cells function in macroencapsulation devices in vivo. Stem Cells Transl Med 4:1214–1222CrossRef Agulnick AD, Ambruzs DM, Moorman MA et al (2015) Insulin-producing endocrine cells differentiated in vitro from human embryonic stem cells function in macroencapsulation devices in vivo. Stem Cells Transl Med 4:1214–1222CrossRef
2.
Zurück zum Zitat Castaing M, Peault B, Basmaciogullari A et al (2001) Blood glucose normalization upon transplantation of human embryonic pancreas into beta-cell-deficient SCID mice. Diabetologia 44:2066–2076CrossRef Castaing M, Peault B, Basmaciogullari A et al (2001) Blood glucose normalization upon transplantation of human embryonic pancreas into beta-cell-deficient SCID mice. Diabetologia 44:2066–2076CrossRef
3.
Zurück zum Zitat D’amour KA, Bang AG, Eliazer S et al (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401CrossRef D’amour KA, Bang AG, Eliazer S et al (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401CrossRef
4.
Zurück zum Zitat Du Y, Liang Z, Wang S et al (2022) Human pluripotent stem-cell-derived islets ameliorate diabetes in non-human primates. Nat Med 28:272–282CrossRef Du Y, Liang Z, Wang S et al (2022) Human pluripotent stem-cell-derived islets ameliorate diabetes in non-human primates. Nat Med 28:272–282CrossRef
5.
Zurück zum Zitat Faleo G, Lee K, Nguyen V et al (2016) Assessment of immune isolation of allogeneic mouse pancreatic progenitor cells by a macroencapsulation device. Transplantation 100:1211–1218CrossRef Faleo G, Lee K, Nguyen V et al (2016) Assessment of immune isolation of allogeneic mouse pancreatic progenitor cells by a macroencapsulation device. Transplantation 100:1211–1218CrossRef
6.
Zurück zum Zitat Griscelli F, Ezanno H, Soubeyrand M et al (2018) Generation of an induced pluripotent stem cell (iPSC) line from a patient with maturity-onset diabetes of the young type 3 (MODY3) carrying a hepatocyte nuclear factor 1‑alpha (HNF1A) mutation. Stem Cell Res 29:56–59CrossRef Griscelli F, Ezanno H, Soubeyrand M et al (2018) Generation of an induced pluripotent stem cell (iPSC) line from a patient with maturity-onset diabetes of the young type 3 (MODY3) carrying a hepatocyte nuclear factor 1‑alpha (HNF1A) mutation. Stem Cell Res 29:56–59CrossRef
7.
Zurück zum Zitat Gurdon JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 10:622–640PubMed Gurdon JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 10:622–640PubMed
8.
Zurück zum Zitat Hirano K, Konagaya S, Turner A et al (2017) Closed-channel culture system for efficient and reproducible differentiation of human pluripotent stem cells into islet cells. Biochem Biophys Res Commun 487:344–350CrossRef Hirano K, Konagaya S, Turner A et al (2017) Closed-channel culture system for efficient and reproducible differentiation of human pluripotent stem cells into islet cells. Biochem Biophys Res Commun 487:344–350CrossRef
9.
Zurück zum Zitat Hosokawa Y, Hanafusa T, Imagawa A (2019) Pathogenesis of fulminant type 1 diabetes: Genes, viruses and the immune mechanism, and usefulness of patient-derived induced pluripotent stem cells for future research. J Diabetes Investig 10:1158–1164CrossRef Hosokawa Y, Hanafusa T, Imagawa A (2019) Pathogenesis of fulminant type 1 diabetes: Genes, viruses and the immune mechanism, and usefulness of patient-derived induced pluripotent stem cells for future research. J Diabetes Investig 10:1158–1164CrossRef
10.
Zurück zum Zitat Hosokawa Y, Toyoda T, Fukui K et al (2018) Insulin-producing cells derived from ’induced pluripotent stem cells’ of patients with fulminant type 1 diabetes: Vulnerability to cytokine insults and increased expression of apoptosis-related genes. J Diabetes Investig 9:481–493CrossRef Hosokawa Y, Toyoda T, Fukui K et al (2018) Insulin-producing cells derived from ’induced pluripotent stem cells’ of patients with fulminant type 1 diabetes: Vulnerability to cytokine insults and increased expression of apoptosis-related genes. J Diabetes Investig 9:481–493CrossRef
11.
Zurück zum Zitat Kawamata S, Kanemura H, Sakai N et al (2015) Design of a tumorigenicity test for induced pluripotent stem cell (iPSC)-derived cell products. J Clin Med 4:159–171CrossRef Kawamata S, Kanemura H, Sakai N et al (2015) Design of a tumorigenicity test for induced pluripotent stem cell (iPSC)-derived cell products. J Clin Med 4:159–171CrossRef
12.
Zurück zum Zitat Kim D, Kim CH, Moon JI et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476CrossRef Kim D, Kim CH, Moon JI et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476CrossRef
13.
Zurück zum Zitat Kirk K, Hao E, Lahmy R et al (2014) Human embryonic stem cell derived islet progenitors mature inside an encapsulation device without evidence of increased biomass or cell escape. Stem Cell Res 12:807–814CrossRef Kirk K, Hao E, Lahmy R et al (2014) Human embryonic stem cell derived islet progenitors mature inside an encapsulation device without evidence of increased biomass or cell escape. Stem Cell Res 12:807–814CrossRef
14.
Zurück zum Zitat Kroon E, Martinson LA, Kadoya K et al (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452CrossRef Kroon E, Martinson LA, Kadoya K et al (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452CrossRef
15.
Zurück zum Zitat Lee AS, Tang C, Rao MS et al (2013) Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 19:998–1004CrossRef Lee AS, Tang C, Rao MS et al (2013) Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 19:998–1004CrossRef
16.
Zurück zum Zitat Markmann JF, Naji A, Rickels MR, Alba M, Marigowda G, Ross L, Wang C, Pagliuca F, Sanna B, Kean LS, Peters AL, Witkowski P, Ricordi C (2022) 259-OR: Stem cell–derived, fully differentiated islet cells for type 1 diabetes. Diabetes. https://doi.org/10.2337/db22-259-OR Markmann JF, Naji A, Rickels MR, Alba M, Marigowda G, Ross L, Wang C, Pagliuca F, Sanna B, Kean LS, Peters AL, Witkowski P, Ricordi C (2022) 259-OR: Stem cell–derived, fully differentiated islet cells for type 1 diabetes. Diabetes. https://​doi.​org/​10.​2337/​db22-259-OR
17.
Zurück zum Zitat Mihara Y, Matsuura K, Sakamoto Y et al (2017) Production of pancreatic progenitor cells from human induced pluripotent stem cells using a three-dimensional suspension bioreactor system. J Tissue Eng Regen Med 11:3193–3201CrossRef Mihara Y, Matsuura K, Sakamoto Y et al (2017) Production of pancreatic progenitor cells from human induced pluripotent stem cells using a three-dimensional suspension bioreactor system. J Tissue Eng Regen Med 11:3193–3201CrossRef
18.
Zurück zum Zitat Pagliuca FW, Millman JR, Gurtler M et al (2014) Generation of functional human pancreatic beta cells in vitro. Cell 159:428–439CrossRef Pagliuca FW, Millman JR, Gurtler M et al (2014) Generation of functional human pancreatic beta cells in vitro. Cell 159:428–439CrossRef
19.
Zurück zum Zitat Path G, Perakakis N, Mantzoros CS et al (2019) Stem cells in the treatment of diabetes mellitus—Focus on mesenchymal stem cells. Metab Clin Exp 90:1–15CrossRef Path G, Perakakis N, Mantzoros CS et al (2019) Stem cells in the treatment of diabetes mellitus—Focus on mesenchymal stem cells. Metab Clin Exp 90:1–15CrossRef
20.
Zurück zum Zitat Pullen LC (2022) Stem cell-derived islets take a leap toward patients. Am J Transplant 22:677–678CrossRef Pullen LC (2022) Stem cell-derived islets take a leap toward patients. Am J Transplant 22:677–678CrossRef
21.
Zurück zum Zitat Pullen LC (2018) Stem cell-derived pancreatic progenitor cells have now been transplanted into patients: report from IPITA 2018. Am J Transplant 18:1581–1582CrossRef Pullen LC (2018) Stem cell-derived pancreatic progenitor cells have now been transplanted into patients: report from IPITA 2018. Am J Transplant 18:1581–1582CrossRef
22.
Zurück zum Zitat Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRef Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRef
23.
Zurück zum Zitat Rezania A, Bruin JE, Arora P et al (2014) Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 32:1121–1133CrossRef Rezania A, Bruin JE, Arora P et al (2014) Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 32:1121–1133CrossRef
24.
Zurück zum Zitat Rezania A, Bruin JE, Riedel MJ et al (2012) Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 61:2016–2029CrossRef Rezania A, Bruin JE, Riedel MJ et al (2012) Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 61:2016–2029CrossRef
25.
Zurück zum Zitat Rezania A, Bruin JE, Xu J et al (2013) Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells 31:2432–2442CrossRef Rezania A, Bruin JE, Xu J et al (2013) Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells 31:2432–2442CrossRef
26.
Zurück zum Zitat Schulz TC (2015) Concise review: manufacturing of pancreatic endoderm cells for clinical trials in type 1 diabetes. Stem Cells Transl Med 4:927–931CrossRef Schulz TC (2015) Concise review: manufacturing of pancreatic endoderm cells for clinical trials in type 1 diabetes. Stem Cells Transl Med 4:927–931CrossRef
27.
Zurück zum Zitat Schulz TC, Young HY, Agulnick AD et al (2012) A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. Plos One 7:e37004CrossRef Schulz TC, Young HY, Agulnick AD et al (2012) A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. Plos One 7:e37004CrossRef
28.
Zurück zum Zitat Shahjalal HM, Shiraki N, Sakano D et al (2014) Generation of insulin-producing beta-like cells from human iPS cells in a defined and completely xeno-free culture system. J Mol Cell Biol 6:394–408CrossRef Shahjalal HM, Shiraki N, Sakano D et al (2014) Generation of insulin-producing beta-like cells from human iPS cells in a defined and completely xeno-free culture system. J Mol Cell Biol 6:394–408CrossRef
29.
Zurück zum Zitat Shapiro AMJ, Thompson D, Donner TW et al (2021) Insulin expression and C‑peptide in type 1 diabetes subjects implanted with stem cell-derived pancreatic endoderm cells in an encapsulation device. Cell Rep Med 2:100466CrossRef Shapiro AMJ, Thompson D, Donner TW et al (2021) Insulin expression and C‑peptide in type 1 diabetes subjects implanted with stem cell-derived pancreatic endoderm cells in an encapsulation device. Cell Rep Med 2:100466CrossRef
30.
Zurück zum Zitat Tan F, Ding C, Sun X et al (2021) Establishment of a human induced pluripotent stem cell line (CSUASOi008-A) from a type 2 diabetic patient with retinopathy. Stem Cell Res 59:102637CrossRef Tan F, Ding C, Sun X et al (2021) Establishment of a human induced pluripotent stem cell line (CSUASOi008-A) from a type 2 diabetic patient with retinopathy. Stem Cell Res 59:102637CrossRef
31.
Zurück zum Zitat Wang T, Warren ST, Jin P (2013) Toward pluripotency by reprogramming: mechanisms and application. Protein Cell 4:820–832CrossRef Wang T, Warren ST, Jin P (2013) Toward pluripotency by reprogramming: mechanisms and application. Protein Cell 4:820–832CrossRef
32.
Zurück zum Zitat Wilmut I, Schnieke AE, Mcwhir J et al (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813CrossRef Wilmut I, Schnieke AE, Mcwhir J et al (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813CrossRef
33.
Zurück zum Zitat Yabe SG, Fukuda S, Takeda F et al (2017) Efficient generation of functional pancreatic beta-cells from human induced pluripotent stem cells. J Diabetes 9:168–179CrossRef Yabe SG, Fukuda S, Takeda F et al (2017) Efficient generation of functional pancreatic beta-cells from human induced pluripotent stem cells. J Diabetes 9:168–179CrossRef
Metadaten
Titel
Stammzellen für die Wiederherstellung der endogenen Insulinsekretion
verfasst von
Dr. rer. nat. Günter Päth
PD Dr. med. Katharina Laubner
Univ. Prof. Dr. med. Jochen Seufert
Publikationsdatum
13.09.2022
Verlag
Springer Medizin
Erschienen in
Die Diabetologie / Ausgabe 7/2022
Print ISSN: 2731-7447
Elektronische ISSN: 2731-7455
DOI
https://doi.org/10.1007/s11428-022-00954-w

Weitere Artikel der Ausgabe 7/2022

Die Diabetologie 7/2022 Zur Ausgabe

Mitteilungen des BDE

Mitteilungen des BDE

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.