Skip to main content
Erschienen in: European Radiology 12/2022

26.05.2022 | Imaging Informatics and Artificial Intelligence

Intestinal fibrosis classification in patients with Crohn’s disease using CT enterographybased deep learning: comparisons with radiomics and radiologists

verfasst von: Jixin Meng, Zixin Luo, Zhihui Chen, Jie Zhou, Zhao Chen, Baolan Lu, Mengchen Zhang, Yangdi Wang, Chenglang Yuan, Xiaodi Shen, Qinqin Huang, Zhuya Zhang, Ziyin Ye, Qinghua Cao, Zhiyang Zhou, Yikai Xu, Ren Mao, Minhu Chen, Canhui Sun, Ziping Li, Shi-Ting Feng, Xiaochun Meng, Bingsheng Huang, Xuehua Li

Erschienen in: European Radiology | Ausgabe 12/2022

Einloggen, um Zugang zu erhalten

Abstract

Objectives

Accurate evaluation of bowel fibrosis in patients with Crohn’s disease (CD) remains challenging. Computed tomography enterography (CTE)–based radiomics enables the assessment of bowel fibrosis; however, it has some deficiencies. We aimed to develop and validate a CTE-based deep learning model (DLM) for characterizing bowel fibrosis more efficiently.

Methods

We enrolled 312 bowel segments of 235 CD patients (median age, 33 years old) from three hospitals in this retrospective study. A training cohort and test cohort 1 were recruited from center 1, while test cohort 2 from centers 2 and 3. All patients performed CTE within 3 months before surgery. The histological fibrosis was semi-quantitatively assessed. A DLM was constructed in the training cohort based on a 3D deep convolutional neural network with 10-fold cross-validation, and external independent validation was conducted on the test cohorts. The radiomics model (RM) was developed with 4 selected radiomics features extracted from CTE images by using logistic regression. The evaluation of CTE images was performed by two radiologists. DeLong’s test and a non-inferiority test were used to compare the models’ performance.

Results

DLM distinguished none-mild from moderate-severe bowel fibrosis with an area under the receiver operator characteristic curve (AUC) of 0.828 in the training cohort and 0.811, 0.808, and 0.839 in the total test cohort, test cohorts 1 and 2, respectively. In the total test cohort, DLM achieved better performance than two radiologists (*1 AUC = 0.579, *2 AUC = 0.646; both p < 0.05) and was not inferior to RM (AUC = 0.813, p < 0.05). The total processing time for DLM was much shorter than that of RM (p < 0.001).

Conclusion

DLM is better than radiologists in diagnosing intestinal fibrosis on CTE in patients with CD and not inferior to RM; furthermore, it is more time-saving compared to RM.

Key Points

• Question Could computed tomography enterography (CTE)–based deep learning model (DLM) accurately distinguish intestinal fibrosis severity in patients with Crohn’s disease (CD)?
• Findings In this cross-sectional study that included 235 patients with CD, DLM achieved better performance than that of two radiologists’ interpretation and was not inferior to RM with significant differences and much shorter processing time.
• Meaning This DLM may accurately distinguish the degree of intestinal fibrosis in patients with CD and guide gastroenterologists to formulate individualized treatment strategies for those with bowel strictures.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Latella G, Di Gregorio J, Flati V, Rieder F, Lawrance IC (2015) Mechanisms of initiation and progression of intestinal fibrosis in IBD. Scand J Gastroenterol 50:53–65CrossRefPubMed Latella G, Di Gregorio J, Flati V, Rieder F, Lawrance IC (2015) Mechanisms of initiation and progression of intestinal fibrosis in IBD. Scand J Gastroenterol 50:53–65CrossRefPubMed
2.
Zurück zum Zitat Bouhnik Y, Carbonnel F, Laharie D et al (2018) Efficacy of adalimumab in patients with Crohn’s disease and symptomatic small bowel stricture: a multicentre, prospective, observational cohort (CREOLE) study. Gut 67:53–60CrossRefPubMed Bouhnik Y, Carbonnel F, Laharie D et al (2018) Efficacy of adalimumab in patients with Crohn’s disease and symptomatic small bowel stricture: a multicentre, prospective, observational cohort (CREOLE) study. Gut 67:53–60CrossRefPubMed
3.
Zurück zum Zitat Rieder F, Fiocchi C, Rogler G (2017) Mechanisms, management, and treatment of fibrosis in patients with inflammatory bowel diseases. Gastroenterology 152:340-350.e346 Rieder F, Fiocchi C, Rogler G (2017) Mechanisms, management, and treatment of fibrosis in patients with inflammatory bowel diseases. Gastroenterology 152:340-350.e346
4.
Zurück zum Zitat Li XH, Mao R, Huang SY et al (2018) Characterization of degree of intestinal fibrosis in patients with Crohn disease by using magnetization transfer MR imaging. Radiology 287:494–503CrossRefPubMed Li XH, Mao R, Huang SY et al (2018) Characterization of degree of intestinal fibrosis in patients with Crohn disease by using magnetization transfer MR imaging. Radiology 287:494–503CrossRefPubMed
5.
Zurück zum Zitat Pellino G, Nicolai E, Catalano OA et al (2016) PET/MR versus PET/CT imaging: impact on the clinical management of small-bowel Crohn’s disease. J Crohns Colitis 10:277–285CrossRefPubMed Pellino G, Nicolai E, Catalano OA et al (2016) PET/MR versus PET/CT imaging: impact on the clinical management of small-bowel Crohn’s disease. J Crohns Colitis 10:277–285CrossRefPubMed
6.
Zurück zum Zitat Baumgart DC, Müller HP, Grittner U et al (2015) US-based real-time elastography for the detection of fibrotic gut tissue in patients with stricturing Crohn disease. Radiology 275:889–899CrossRefPubMed Baumgart DC, Müller HP, Grittner U et al (2015) US-based real-time elastography for the detection of fibrotic gut tissue in patients with stricturing Crohn disease. Radiology 275:889–899CrossRefPubMed
8.
10.
Zurück zum Zitat Luo H, Xu G, Li C et al (2019) Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study. Lancet Oncol 20:1645–1654CrossRefPubMed Luo H, Xu G, Li C et al (2019) Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study. Lancet Oncol 20:1645–1654CrossRefPubMed
12.
Zurück zum Zitat Lamash Y, Kurugol S, Freiman M et al (2019) Curved planar reformatting and convolutional neural network-based segmentation of the small bowel for visualization and quantitative assessment of pediatric Crohn’s disease from MRI. J Magn Reson Imaging 49:1565–1576CrossRefPubMed Lamash Y, Kurugol S, Freiman M et al (2019) Curved planar reformatting and convolutional neural network-based segmentation of the small bowel for visualization and quantitative assessment of pediatric Crohn’s disease from MRI. J Magn Reson Imaging 49:1565–1576CrossRefPubMed
13.
Zurück zum Zitat Mahapatra D, Vos FM, Buhmann JM (2016) Active learning based segmentation of Crohns disease from abdominal MRI. Comput Methods Programs Biomed 128:75–85CrossRefPubMed Mahapatra D, Vos FM, Buhmann JM (2016) Active learning based segmentation of Crohns disease from abdominal MRI. Comput Methods Programs Biomed 128:75–85CrossRefPubMed
14.
Zurück zum Zitat Morilla I (2020) A deep learning approach to evaluate intestinal fibrosis in magnetic resonance imaging models. Neural Comput Appl 32:14865–14874CrossRef Morilla I (2020) A deep learning approach to evaluate intestinal fibrosis in magnetic resonance imaging models. Neural Comput Appl 32:14865–14874CrossRef
16.
Zurück zum Zitat Esteva A, Robicquet A, Ramsundar B et al (2019) A guide to deep learning in healthcare. Nat Med 25:24–29CrossRefPubMed Esteva A, Robicquet A, Ramsundar B et al (2019) A guide to deep learning in healthcare. Nat Med 25:24–29CrossRefPubMed
17.
Zurück zum Zitat Rimola J, Planell N, Rodríguez S et al (2015) Characterization of inflammation and fibrosis in Crohn’s disease lesions by magnetic resonance imaging. Am J Gastroenterol 110:432–440CrossRefPubMed Rimola J, Planell N, Rodríguez S et al (2015) Characterization of inflammation and fibrosis in Crohn’s disease lesions by magnetic resonance imaging. Am J Gastroenterol 110:432–440CrossRefPubMed
18.
Zurück zum Zitat Zhang MC, Li XH, Huang SY et al (2019) IVIM with fractional perfusion as a novel biomarker for detecting and grading intestinal fibrosis in Crohn’s disease. Eur Radiol 29:3069–3078CrossRefPubMed Zhang MC, Li XH, Huang SY et al (2019) IVIM with fractional perfusion as a novel biomarker for detecting and grading intestinal fibrosis in Crohn’s disease. Eur Radiol 29:3069–3078CrossRefPubMed
19.
Zurück zum Zitat Adler J, Punglia DR, Dillman JR et al (2012) Computed tomography enterography findings correlate with tissue inflammation, not fibrosis in resected small bowel Crohn’s disease. Inflamm Bowel Dis 18:849–856CrossRefPubMed Adler J, Punglia DR, Dillman JR et al (2012) Computed tomography enterography findings correlate with tissue inflammation, not fibrosis in resected small bowel Crohn’s disease. Inflamm Bowel Dis 18:849–856CrossRefPubMed
20.
Zurück zum Zitat Viera AJ, Garrett JM (2005) Understanding interobserver agreement: the kappa statistic. Fam Med 37:360–363PubMed Viera AJ, Garrett JM (2005) Understanding interobserver agreement: the kappa statistic. Fam Med 37:360–363PubMed
21.
Zurück zum Zitat Li XH, Feng ST, Cao QH et al (2021) Degree of creeping fat assessed by CT enterography is associated with intestinal fibrotic stricture in patients with Crohn’s disease: a potentially novel mesenteric creeping fat index. J Crohns Colitis. https://doi.org/10.1093/ecco-jcc/jjab005 Li XH, Feng ST, Cao QH et al (2021) Degree of creeping fat assessed by CT enterography is associated with intestinal fibrotic stricture in patients with Crohn’s disease: a potentially novel mesenteric creeping fat index. J Crohns Colitis. https://​doi.​org/​10.​1093/​ecco-jcc/​jjab005
22.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition 90:9 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition 90:9
23.
Zurück zum Zitat Lin TY, Goyal P, Girshick R, He K, Dollar P (2020) Focal loss for dense object detection. IEEE Trans Pattern Anal Mach Intell 42:318–327CrossRefPubMed Lin TY, Goyal P, Girshick R, He K, Dollar P (2020) Focal loss for dense object detection. IEEE Trans Pattern Anal Mach Intell 42:318–327CrossRefPubMed
24.
Zurück zum Zitat Kingma DP. Ba J (2015) ADAM: a method for stochastic optimization. The International Conference on Learning Representations:15 Kingma DP. Ba J (2015) ADAM: a method for stochastic optimization. The International Conference on Learning Representations:15
25.
Zurück zum Zitat Selvaraju RR, Cogswell M, Das A et al (2017) Grad-CAM: visual explanations from deep networks via gradient-based localization. IEEE International Conference on Computer Vision:9 Selvaraju RR, Cogswell M, Das A et al (2017) Grad-CAM: visual explanations from deep networks via gradient-based localization. IEEE International Conference on Computer Vision:9
26.
Zurück zum Zitat Van Der Maaten L, Hinton G (2008) Visualizing Ddata using t-SNE. J Mach Learn Res 9:27 Van Der Maaten L, Hinton G (2008) Visualizing Ddata using t-SNE. J Mach Learn Res 9:27
28.
Zurück zum Zitat Dercle L, Fronheiser M, Lu L et al (2020) Identification of non-small cell lung cancer sensitive to systemic cancer therapies using radiomics. Clin Cancer Res 26:2151–2162CrossRefPubMedCentralPubMed Dercle L, Fronheiser M, Lu L et al (2020) Identification of non-small cell lung cancer sensitive to systemic cancer therapies using radiomics. Clin Cancer Res 26:2151–2162CrossRefPubMedCentralPubMed
29.
Zurück zum Zitat Liu JP, Ma MC, Wu CY, Tai JY (2006) Tests of equivalence and non-inferiority for diagnostic accuracy based on the paired areas under ROC curves. Stat Med 25:1219–1238CrossRefPubMed Liu JP, Ma MC, Wu CY, Tai JY (2006) Tests of equivalence and non-inferiority for diagnostic accuracy based on the paired areas under ROC curves. Stat Med 25:1219–1238CrossRefPubMed
30.
Zurück zum Zitat Zhou XH, Obuchowski NA, McClish DK (2002) Statistical methods in diagnostic medicine. Wiley, New York, pp 188–192CrossRef Zhou XH, Obuchowski NA, McClish DK (2002) Statistical methods in diagnostic medicine. Wiley, New York, pp 188–192CrossRef
32.
Zurück zum Zitat Sun Q, Lin X, Zhao Y et al (2020) Deep learning vs. radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images: don’'t forget the peritumoral region. Front Oncol 10:53CrossRefPubMedCentralPubMed Sun Q, Lin X, Zhao Y et al (2020) Deep learning vs. radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images: don’'t forget the peritumoral region. Front Oncol 10:53CrossRefPubMedCentralPubMed
33.
Zurück zum Zitat Truhn D, Schrading S, Haarburger C, Schneider H, Merhof D, Kuhl C (2019) Radiomic versus convolutional neural networks analysis for classification of contrast-enhancing lesions at multiparametric breast MRI. Radiology 290:290–297CrossRefPubMed Truhn D, Schrading S, Haarburger C, Schneider H, Merhof D, Kuhl C (2019) Radiomic versus convolutional neural networks analysis for classification of contrast-enhancing lesions at multiparametric breast MRI. Radiology 290:290–297CrossRefPubMed
34.
Zurück zum Zitat Luo Y, Chen X, Chen J et al (2020) Preoperative prediction of pancreatic neuroendocrine neoplasms grading based on enhanced computed tomography imaging: validation of deep learning with a convolutional neural network. Neuroendocrinology 110:338–350CrossRefPubMed Luo Y, Chen X, Chen J et al (2020) Preoperative prediction of pancreatic neuroendocrine neoplasms grading based on enhanced computed tomography imaging: validation of deep learning with a convolutional neural network. Neuroendocrinology 110:338–350CrossRefPubMed
35.
Zurück zum Zitat Kato H, Kanematsu M, Zhang XJ et al (2007) Computer-aided diagnosis of hepatic fibrosis: pPreliminary evaluation of MRI texture analysis using the finite difference method and an artificial neural network. AJR Am J Roentgenol 189:117–122 Kato H, Kanematsu M, Zhang XJ et al (2007) Computer-aided diagnosis of hepatic fibrosis: pPreliminary evaluation of MRI texture analysis using the finite difference method and an artificial neural network. AJR Am J Roentgenol 189:117–122
36.
Zurück zum Zitat Gordon IO, Bettenworth D, Bokemeyer A et al (2022) International consensus to standardise histopathological scoring for small bowel strictures in Crohn’s disease. Gut 71:479–486CrossRefPubMed Gordon IO, Bettenworth D, Bokemeyer A et al (2022) International consensus to standardise histopathological scoring for small bowel strictures in Crohn’s disease. Gut 71:479–486CrossRefPubMed
37.
Zurück zum Zitat Chiorean MV, Sandrasegaran K, Saxena R, Maglinte DD, Nakeeb A, Johnson CS (2007) Correlation of CT enteroclysis with surgical pathology in Crohn’'s disease. Am J Gastroenterol 102:2541–2550CrossRefPubMed Chiorean MV, Sandrasegaran K, Saxena R, Maglinte DD, Nakeeb A, Johnson CS (2007) Correlation of CT enteroclysis with surgical pathology in Crohn’'s disease. Am J Gastroenterol 102:2541–2550CrossRefPubMed
38.
Zurück zum Zitat Li JN, Mao R, Kurada S et al (2019) Pathogenesis of fibrostenosing Crohn’'s disease. Transl Res 209:39–54CrossRefPubMed Li JN, Mao R, Kurada S et al (2019) Pathogenesis of fibrostenosing Crohn’'s disease. Transl Res 209:39–54CrossRefPubMed
Metadaten
Titel
Intestinal fibrosis classification in patients with Crohn’s disease using CT enterography–based deep learning: comparisons with radiomics and radiologists
verfasst von
Jixin Meng
Zixin Luo
Zhihui Chen
Jie Zhou
Zhao Chen
Baolan Lu
Mengchen Zhang
Yangdi Wang
Chenglang Yuan
Xiaodi Shen
Qinqin Huang
Zhuya Zhang
Ziyin Ye
Qinghua Cao
Zhiyang Zhou
Yikai Xu
Ren Mao
Minhu Chen
Canhui Sun
Ziping Li
Shi-Ting Feng
Xiaochun Meng
Bingsheng Huang
Xuehua Li
Publikationsdatum
26.05.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 12/2022
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-022-08842-z

Weitere Artikel der Ausgabe 12/2022

European Radiology 12/2022 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.