Skip to main content
Erschienen in: Inflammation 6/2021

17.10.2021 | Original Article

Links Between Gut Dysbiosis and Neurotransmitter Disturbance in Chronic Restraint Stress-Induced Depressive Behaviours: the Role of Inflammation

verfasst von: Hai-long Yang, Meng-Meng Li, Man-Fei Zhou, Huai-Sha Xu, Fei Huan, Na Liu, Rong Gao, Jun Wang, Ning Zhang, Lei Jiang

Erschienen in: Inflammation | Ausgabe 6/2021

Einloggen, um Zugang zu erhalten

Abstract

Accumulating evidence has shown that inflammation, the gut microbiota, and neurotransmitters are closely associated with the pathophysiology of depression. However, the links between the gut microbiota and neurotransmitter metabolism remain poorly understood. The present study aimed to investigate the neuroinflammatory reactions in chronic restraint stress (CRS)-induced depression and to delineate the potential links between the gut microbiota and neurotransmitter metabolism. C57BL/6 mice were subjected to chronic restraint stress for 5 weeks, followed by behavioural tests (the sucrose preference test, forced swim test, open field test, and elevated plus maze) and analysis. The results showed that CRS significantly increased interleukin-1 beta (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6), and tumour necrosis factor α (TNFα) levels and decreased brain-derived neurotrophic factor (BDNF) expression, accompanied by the activation of IkappaB-alpha-phosphorylation-nuclear factor kappa-B (IκBα-p-NF-κB) signalling in the mouse hippocampus. In addition, the neurotransmitter metabolomics results showed that CRS resulted in decreased levels of plasma 5-hydroxytryptamine (5-HT), dopamine (DA), and noradrenaline (NE) and their corresponding metabolites, and gut microbiota faecal metabolites with the 16S rRNA gene sequencing indicated that CRS caused marked microbiota dysbiosis in mice, with a significant increase in Helicobacter, Lactobacillus, and Oscillibacter and a decrease in Parabacteroides, Ruminococcus, and Prevotella. Notably, CRS-induced depressive behaviours and the disturbance of neurotransmitter metabolism and microbiota dysbiosis can be substantially restored by dexamethasone (DXMS) administration. Furthermore, a Pearson heatmap focusing on correlations between the microbiota, behaviours, and neurotransmitters showed that Helicobacter, Lactobacillus, and Oscillibacter were positively correlated with depressive behaviours but were negatively correlated with neurotransmitter metabolism, and Parabacteroides and Ruminococcus were negatively correlated with depressive behaviours but were positively correlated with neurotransmitter metabolism. Taken together, the results suggest that inflammation is involved in microbiota dysbiosis and the disturbance of neurotransmitter metabolism in CRS-induced depressive changes, and the delineation of the potential links between the microbiota and neurotransmitter metabolism will provide novel strategies for depression treatment.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Global Burden of Disease Study 2013 Collaborators. 2015. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 386 (9995): 743–800.PubMedCentralCrossRef Global Burden of Disease Study 2013 Collaborators. 2015. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 386 (9995): 743–800.PubMedCentralCrossRef
2.
Zurück zum Zitat Gulbins, A., F. Schumacher, K.A. Becker, B. Wilker, M. Soddemann, F. Boldrin, et al. 2018. Antidepressants act by inducing autophagy controlled by sphingomyelin-ceramide. Molecular Psychiatry 23 (12): 2324–2346.PubMedPubMedCentralCrossRef Gulbins, A., F. Schumacher, K.A. Becker, B. Wilker, M. Soddemann, F. Boldrin, et al. 2018. Antidepressants act by inducing autophagy controlled by sphingomyelin-ceramide. Molecular Psychiatry 23 (12): 2324–2346.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Kessler, R.C., P. Berglund, O. Demler, R. Jin, D. Koretz, K.R. Merikangas, et al. 2003. The epidemiology of major depressive disorder: Results from the National Comorbidity Survey Replication (NCS-R). JAMA 289 (23): 3095–3105.CrossRef Kessler, R.C., P. Berglund, O. Demler, R. Jin, D. Koretz, K.R. Merikangas, et al. 2003. The epidemiology of major depressive disorder: Results from the National Comorbidity Survey Replication (NCS-R). JAMA 289 (23): 3095–3105.CrossRef
4.
Zurück zum Zitat Roiser, J.P., R. Elliott, and B.J. Sahakian. 2012. Cognitive mechanisms of treatment in depression. Neuropsychopharmacology 37 (1): 117–136.PubMedCrossRef Roiser, J.P., R. Elliott, and B.J. Sahakian. 2012. Cognitive mechanisms of treatment in depression. Neuropsychopharmacology 37 (1): 117–136.PubMedCrossRef
5.
Zurück zum Zitat Kenis, G., and M. Maes. 2002. Effects of antidepressants on the production of cytokines. International Journal of Neuropsychopharmacology 5 (4): 401–412.CrossRef Kenis, G., and M. Maes. 2002. Effects of antidepressants on the production of cytokines. International Journal of Neuropsychopharmacology 5 (4): 401–412.CrossRef
6.
Zurück zum Zitat Miller, A.H., and C.L. Raison. 2016. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nature Reviews Immunology 16 (1): 22–34.PubMedPubMedCentralCrossRef Miller, A.H., and C.L. Raison. 2016. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nature Reviews Immunology 16 (1): 22–34.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Hashioka, S., P.L. McGeer, A. Monji, and S. Kanba. 2009. Anti-inflammatory effects of antidepressants: Possibilities for preventives against Alzheimer’s disease. Central Nervous System Agents in Medicinal Chemistry 9 (1): 12–19.PubMedCrossRef Hashioka, S., P.L. McGeer, A. Monji, and S. Kanba. 2009. Anti-inflammatory effects of antidepressants: Possibilities for preventives against Alzheimer’s disease. Central Nervous System Agents in Medicinal Chemistry 9 (1): 12–19.PubMedCrossRef
8.
Zurück zum Zitat Goshen, I., T. Kreisel, O. Ben-Menachem-Zidon, T. Licht, J. Weidenfeld, T. Ben-Hur, et al. 2008. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Molecular Psychiatry 13 (7): 717–728.PubMedCrossRef Goshen, I., T. Kreisel, O. Ben-Menachem-Zidon, T. Licht, J. Weidenfeld, T. Ben-Hur, et al. 2008. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Molecular Psychiatry 13 (7): 717–728.PubMedCrossRef
9.
Zurück zum Zitat Jiang, P., Y. Guo, R. Dang, M. Yang, D. Liao, H. Li, et al. 2017. Salvianolic acid B protects against lipopolysaccharide-induced behavioral deficits and neuroinflammatory response: Involvement of autophagy and NLRP3 inflammasome. Journal of Neuroinflammation 14 (1): 239.PubMedPubMedCentralCrossRef Jiang, P., Y. Guo, R. Dang, M. Yang, D. Liao, H. Li, et al. 2017. Salvianolic acid B protects against lipopolysaccharide-induced behavioral deficits and neuroinflammatory response: Involvement of autophagy and NLRP3 inflammasome. Journal of Neuroinflammation 14 (1): 239.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Ertenli, I., S. Ozer, S. Kiraz, S.B. Apras, A. Akdogan, O. Karadag, et al. 2012. Infliximab, a TNF-α antagonist treatment in patients with ankylosing spondylitis: The impact on depression, anxiety and quality of life level. Rheumatology International 32 (2): 323–330.PubMedCrossRef Ertenli, I., S. Ozer, S. Kiraz, S.B. Apras, A. Akdogan, O. Karadag, et al. 2012. Infliximab, a TNF-α antagonist treatment in patients with ankylosing spondylitis: The impact on depression, anxiety and quality of life level. Rheumatology International 32 (2): 323–330.PubMedCrossRef
11.
Zurück zum Zitat Lopresti, A.L., S.D. Hood, and P.D. Drummond. 2012. Multiple antidepressant potential modes of action of curcumin: A review of its anti-inflammatory, monoaminergic, antioxidant, immune-modulating and neuroprotective effects. Journal of Psychopharmacology. (Oxford) 26 (12): 1512–1524.CrossRef Lopresti, A.L., S.D. Hood, and P.D. Drummond. 2012. Multiple antidepressant potential modes of action of curcumin: A review of its anti-inflammatory, monoaminergic, antioxidant, immune-modulating and neuroprotective effects. Journal of Psychopharmacology. (Oxford) 26 (12): 1512–1524.CrossRef
12.
Zurück zum Zitat Koo, J.W., S.J. Russo, D. Ferguson, E.J. Nestler, and R.S. Duman. 2010. Nuclear factor-kappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proceedings of the National academy of Sciences of the United States of America 107 (6): 2669–2674.PubMedPubMedCentralCrossRef Koo, J.W., S.J. Russo, D. Ferguson, E.J. Nestler, and R.S. Duman. 2010. Nuclear factor-kappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proceedings of the National academy of Sciences of the United States of America 107 (6): 2669–2674.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat O’Sullivan, J.B., K.M. Ryan, N.M. Curtin, A. Harkin, and T.J. Connor. 2009. Noradrenaline reuptake inhibitors limit neuroinflammation in rat cortex following a systemic inflammatory challenge: Implications for depression and neurodegeneration. International Journal of Neuropsychopharmacology 12 (5): 687–699.CrossRef O’Sullivan, J.B., K.M. Ryan, N.M. Curtin, A. Harkin, and T.J. Connor. 2009. Noradrenaline reuptake inhibitors limit neuroinflammation in rat cortex following a systemic inflammatory challenge: Implications for depression and neurodegeneration. International Journal of Neuropsychopharmacology 12 (5): 687–699.CrossRef
14.
Zurück zum Zitat Martin, C.R., V. Osadchiy, A. Kalani, and E.A. Mayer. 2018. The brain-gut-microbiome axis. Cellular and Molecular Gastroenterology and Hepatology 6 (2): 133–148.PubMedPubMedCentralCrossRef Martin, C.R., V. Osadchiy, A. Kalani, and E.A. Mayer. 2018. The brain-gut-microbiome axis. Cellular and Molecular Gastroenterology and Hepatology 6 (2): 133–148.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Mayer, E.A., R. Knight, S.K. Mazmanian, J.F. Cryan, and K. Tillisch. 2014. Gut microbes and the brain: Paradigm shift in neuroscience. Journal of Neuroscience 34 (46): 15490–15496.PubMedCrossRef Mayer, E.A., R. Knight, S.K. Mazmanian, J.F. Cryan, and K. Tillisch. 2014. Gut microbes and the brain: Paradigm shift in neuroscience. Journal of Neuroscience 34 (46): 15490–15496.PubMedCrossRef
16.
Zurück zum Zitat Aslam, H., J. Green, F.N. Jacka, F. Collier, M. Berk, J. Pasco, et al. 2018. Fermented foods, the gut and mental health: A mechanistic overview with implications for depression and anxiety. Nutrition Neuroscience 1–13. Aslam, H., J. Green, F.N. Jacka, F. Collier, M. Berk, J. Pasco, et al. 2018. Fermented foods, the gut and mental health: A mechanistic overview with implications for depression and anxiety. Nutrition Neuroscience 1–13.
17.
Zurück zum Zitat Luo, S., X. Kong, J.R. Wu, C.Y. Wang, Y. Tian, G. Zheng, et al. 2018. Neuroinflammation in acute hepatic encephalopathy rats: Imaging and therapeutic effectiveness evaluation using 11C-PK11195 and 18F-DPA-714 micro-positron emission tomography. Metabolic Brain Disease 33 (5): 1733–1742.PubMedCrossRef Luo, S., X. Kong, J.R. Wu, C.Y. Wang, Y. Tian, G. Zheng, et al. 2018. Neuroinflammation in acute hepatic encephalopathy rats: Imaging and therapeutic effectiveness evaluation using 11C-PK11195 and 18F-DPA-714 micro-positron emission tomography. Metabolic Brain Disease 33 (5): 1733–1742.PubMedCrossRef
18.
Zurück zum Zitat Luo, Y., B. Zeng, L. Zeng, X. Du, B. Li, R. Huo, et al. 2018. Gut microbiota regulates mouse behaviors through glucocorticoid receptor pathway genes in the hippocampus. Translational Psychiatry 8 (1): 187.PubMedPubMedCentralCrossRef Luo, Y., B. Zeng, L. Zeng, X. Du, B. Li, R. Huo, et al. 2018. Gut microbiota regulates mouse behaviors through glucocorticoid receptor pathway genes in the hippocampus. Translational Psychiatry 8 (1): 187.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Jiang, H., Z. Ling, Y. Zhang, H. Mao, Z. Ma, Y. Yin, et al. 2015. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behavior & Immunity 48 (4): 186–194.CrossRef Jiang, H., Z. Ling, Y. Zhang, H. Mao, Z. Ma, Y. Yin, et al. 2015. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behavior & Immunity 48 (4): 186–194.CrossRef
20.
Zurück zum Zitat Guida, F., F. Turco, M. Iannotta, D. De Gregorio, I. Palumbo, G. Sarnelli, et al. 2018. Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain, Behavior, and Immunity 67: 230–245.PubMedCrossRef Guida, F., F. Turco, M. Iannotta, D. De Gregorio, I. Palumbo, G. Sarnelli, et al. 2018. Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain, Behavior, and Immunity 67: 230–245.PubMedCrossRef
21.
Zurück zum Zitat Li, N., Q. Wang, Y. Wang, A. Sun, Y. Lin, Y. Jin, et al. 2018. Oral probiotics ameliorate the behavioral deficits induced by chronic mild stress in mice via the gut microbiota-inflammation axis. Frontiers in Behavioral Neuroscience 12: 266.PubMedPubMedCentralCrossRef Li, N., Q. Wang, Y. Wang, A. Sun, Y. Lin, Y. Jin, et al. 2018. Oral probiotics ameliorate the behavioral deficits induced by chronic mild stress in mice via the gut microbiota-inflammation axis. Frontiers in Behavioral Neuroscience 12: 266.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Dinan, T.G., and J.F. Cryan. 2016. Microbes, immunity and behaviour: Psychoneuroimmunology meets the microbiome. Neuropsychopharmacology Official Publication of the American College of Neuropsychopharmacology 42 (1): 178.PubMedPubMedCentralCrossRef Dinan, T.G., and J.F. Cryan. 2016. Microbes, immunity and behaviour: Psychoneuroimmunology meets the microbiome. Neuropsychopharmacology Official Publication of the American College of Neuropsychopharmacology 42 (1): 178.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Doherty, F.D., S.M. O’Mahony, V.L. Peterson, O. O’Sullivan, F. Crispie, P.D. Cotter, et al. 2017. Post-weaning social isolation of rats leads to long-term disruption of the gut microbiota-immune-brain axis. Brain Behavior & Immunity 68: S0889159117304804. Doherty, F.D., S.M. O’Mahony, V.L. Peterson, O. O’Sullivan, F. Crispie, P.D. Cotter, et al. 2017. Post-weaning social isolation of rats leads to long-term disruption of the gut microbiota-immune-brain axis. Brain Behavior & Immunity 68: S0889159117304804.
24.
Zurück zum Zitat Wang, Q., M.A. Timberlake 2nd., K. Prall, and Y. Dwivedi. 2017. The recent progress in animal models of depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry 77: 99–109.PubMedCrossRef Wang, Q., M.A. Timberlake 2nd., K. Prall, and Y. Dwivedi. 2017. The recent progress in animal models of depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry 77: 99–109.PubMedCrossRef
25.
Zurück zum Zitat Bska, K.J.J., T. Litwin, I. Joniec, A. Ciesielska, A. Przybyłkowski, A. Członkowski, et al. 2004. Dexamethasone protects against dopaminergic neurons damage in a mouse model of Parkinson’s disease. International Immunopharmacology 4 (10): 1307–1318. Bska, K.J.J., T. Litwin, I. Joniec, A. Ciesielska, A. Przybyłkowski, A. Członkowski, et al. 2004. Dexamethasone protects against dopaminergic neurons damage in a mouse model of Parkinson’s disease. International Immunopharmacology 4 (10): 1307–1318.
26.
Zurück zum Zitat Cassol-Jr, O.J., C.M. Comim, F. Petronilho, L.S. Constantino, E.L. Streck, J. Quevedo, et al. 2010. Low dose dexamethasone reverses depressive-like parameters and memory impairment in rats submitted to sepsis. Neuroscience Letters 473 (2): 126–130.CrossRef Cassol-Jr, O.J., C.M. Comim, F. Petronilho, L.S. Constantino, E.L. Streck, J. Quevedo, et al. 2010. Low dose dexamethasone reverses depressive-like parameters and memory impairment in rats submitted to sepsis. Neuroscience Letters 473 (2): 126–130.CrossRef
27.
Zurück zum Zitat Khalid, A., B.S. Kim, B.A. Seo, S.T. Lee, K.H. Jung, K. Chu, et al. 2016. Gamma oscillation in functional brain networks is involved in the spontaneous remission of depressive behavior induced by chronic restraint stress in mice. BMC Neuroscience 17: 4.PubMedPubMedCentralCrossRef Khalid, A., B.S. Kim, B.A. Seo, S.T. Lee, K.H. Jung, K. Chu, et al. 2016. Gamma oscillation in functional brain networks is involved in the spontaneous remission of depressive behavior induced by chronic restraint stress in mice. BMC Neuroscience 17: 4.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Wang, L., L. Tang, Y. Feng, S. Zhao, M. Han, C. Zhang, G. Yuan, J. Zhu, S. Cao, Q. Wu, L. Li, and Z. Zhang. 2020. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8(+) T cells in mice. Gut 69 (11): 1988–1997.PubMedCrossRef Wang, L., L. Tang, Y. Feng, S. Zhao, M. Han, C. Zhang, G. Yuan, J. Zhu, S. Cao, Q. Wu, L. Li, and Z. Zhang. 2020. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8(+) T cells in mice. Gut 69 (11): 1988–1997.PubMedCrossRef
29.
Zurück zum Zitat Zhu, Y., E.A. Klomparens, S. Guo, and X. Geng. 2019. Neuroinflammation caused by mental stress: The effect of chronic restraint stress and acute repeated social defeat stress in mice. Neurological Research 41 (8): 762–769.PubMedCrossRef Zhu, Y., E.A. Klomparens, S. Guo, and X. Geng. 2019. Neuroinflammation caused by mental stress: The effect of chronic restraint stress and acute repeated social defeat stress in mice. Neurological Research 41 (8): 762–769.PubMedCrossRef
30.
Zurück zum Zitat Guo, Y., J. Xie, X. Li, Y. Yuan, L. Zhang, W. Hu, et al. 2018. Antidepressant effects of rosemary extracts associate with anti-inflammatory effect and rebalance of gut microbiota. Frontiers in Pharmacology 9: 1126.PubMedPubMedCentralCrossRef Guo, Y., J. Xie, X. Li, Y. Yuan, L. Zhang, W. Hu, et al. 2018. Antidepressant effects of rosemary extracts associate with anti-inflammatory effect and rebalance of gut microbiota. Frontiers in Pharmacology 9: 1126.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Zha, L., J. Chen, S. Sun, L. Mao, X. Chu, H. Deng, et al. 2014. Soyasaponins can blunt inflammation by inhibiting the reactive oxygen species-mediated activation of PI3K/Akt/NF-kB pathway. PLoS ONE 9 (9), e107655. Zha, L., J. Chen, S. Sun, L. Mao, X. Chu, H. Deng, et al. 2014. Soyasaponins can blunt inflammation by inhibiting the reactive oxygen species-mediated activation of PI3K/Akt/NF-kB pathway. PLoS ONE 9 (9), e107655.
32.
33.
Zurück zum Zitat Yu, G., and B.M. Sharp. 2012. Nicotine modulates multiple regions in the limbic stress network regulating activation of hypophysiotrophic neurons in hypothalamic paraventricular nucleus. Journal of Neurochemistry 122 (3): 628–640.PubMedPubMedCentralCrossRef Yu, G., and B.M. Sharp. 2012. Nicotine modulates multiple regions in the limbic stress network regulating activation of hypophysiotrophic neurons in hypothalamic paraventricular nucleus. Journal of Neurochemistry 122 (3): 628–640.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Mai, N.T., T.V. Tuan, M. Wolbers, D.M. Hoang, T.V. Nga, T.T. Chau, et al. 2009. Immunological and biochemical correlates of adjunctive dexamethasone in Vietnamese adults with bacterial meningitis. Clinical Infectious Diseases 49 (9): 1387–1392.PubMedCrossRef Mai, N.T., T.V. Tuan, M. Wolbers, D.M. Hoang, T.V. Nga, T.T. Chau, et al. 2009. Immunological and biochemical correlates of adjunctive dexamethasone in Vietnamese adults with bacterial meningitis. Clinical Infectious Diseases 49 (9): 1387–1392.PubMedCrossRef
35.
Zurück zum Zitat Meneses, G., G. Gevorkian, A. Florentino, M.A. Bautista, A. Espinosa, G. Acero, et al. 2017. Intranasal delivery of dexamethasone efficiently controls LPS-induced murine neuroinflammation. Clinical and Experimental Immunology 190 (3): 304–314.PubMedPubMedCentralCrossRef Meneses, G., G. Gevorkian, A. Florentino, M.A. Bautista, A. Espinosa, G. Acero, et al. 2017. Intranasal delivery of dexamethasone efficiently controls LPS-induced murine neuroinflammation. Clinical and Experimental Immunology 190 (3): 304–314.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Vizuete, A., F. Hansen, E. Negri, M.C. Leite, D.L. de Oliveira, and C.A. Gonçalves. 2018. Effects of dexamethasone on the Li-pilocarpine model of epilepsy: Protection against hippocampal inflammation and astrogliosis. Journal of Neuroinflammation 15 (1): 68.PubMedPubMedCentralCrossRef Vizuete, A., F. Hansen, E. Negri, M.C. Leite, D.L. de Oliveira, and C.A. Gonçalves. 2018. Effects of dexamethasone on the Li-pilocarpine model of epilepsy: Protection against hippocampal inflammation and astrogliosis. Journal of Neuroinflammation 15 (1): 68.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Zhao, Y., Q. Wang, M. Jia, S. Fu, J. Pan, C. Chu, et al. 2019. (+)-Sesamin attenuates chronic unpredictable mild stress-induced depressive-like behaviors and memory deficits via suppression of neuroinflammation. Journal of Nutritional Biochemistry 64: 61–71.CrossRef Zhao, Y., Q. Wang, M. Jia, S. Fu, J. Pan, C. Chu, et al. 2019. (+)-Sesamin attenuates chronic unpredictable mild stress-induced depressive-like behaviors and memory deficits via suppression of neuroinflammation. Journal of Nutritional Biochemistry 64: 61–71.CrossRef
38.
Zurück zum Zitat Pesarico, A.P., G. Sartori, C.A. Brüning, A.C. Mantovani, T. Duarte, G. Zeni, et al. 2016. A novel isoquinoline compound abolishes chronic unpredictable mild stress-induced depressive-like behavior in mice. Behavioural Brain Research 307: 73–83.PubMedCrossRef Pesarico, A.P., G. Sartori, C.A. Brüning, A.C. Mantovani, T. Duarte, G. Zeni, et al. 2016. A novel isoquinoline compound abolishes chronic unpredictable mild stress-induced depressive-like behavior in mice. Behavioural Brain Research 307: 73–83.PubMedCrossRef
39.
Zurück zum Zitat Perez-Caballero, L., S. Torres-Sanchez, C. Romero-López-Alberca, F. González-Saiz, J.A. Mico, and E. Berrocoso. 2019. Monoaminergic system and depression. Cell and Tissue Research 377 (1): 107–113.PubMedCrossRef Perez-Caballero, L., S. Torres-Sanchez, C. Romero-López-Alberca, F. González-Saiz, J.A. Mico, and E. Berrocoso. 2019. Monoaminergic system and depression. Cell and Tissue Research 377 (1): 107–113.PubMedCrossRef
40.
Zurück zum Zitat Guo, Y., J.P. Xie, K. Deng, X. Li, Y. Yuan, Q. Xuan, et al. 2019. Prophylactic effects of bifidobacterium adolescentis on anxiety and depression-like phenotypes after chronic stress: A role of the gut microbiota-inflammation axis. Frontiers in Behavioral Neuroscience 13: 126.PubMedPubMedCentralCrossRef Guo, Y., J.P. Xie, K. Deng, X. Li, Y. Yuan, Q. Xuan, et al. 2019. Prophylactic effects of bifidobacterium adolescentis on anxiety and depression-like phenotypes after chronic stress: A role of the gut microbiota-inflammation axis. Frontiers in Behavioral Neuroscience 13: 126.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Kim, S.H., J.W. Lim, H. Kim, 2018. Astaxanthin inhibits mitochondrial dysfunction and interleukin-8 expression in helicobacter pylori-infected gastric epithelial cells. Nutrients 10 (9). Kim, S.H., J.W. Lim, H. Kim, 2018. Astaxanthin inhibits mitochondrial dysfunction and interleukin-8 expression in helicobacter pylori-infected gastric epithelial cells. Nutrients 10 (9).
42.
Zurück zum Zitat McGee, D.J., X.H. Lu, and E.A. Disbrow. 2018. Stomaching the possibility of a pathogenic role for Helicobacter pylori in Parkinson’s disease. Journal of Parkinson’s Disease 8 (3): 367–374.PubMedPubMedCentralCrossRef McGee, D.J., X.H. Lu, and E.A. Disbrow. 2018. Stomaching the possibility of a pathogenic role for Helicobacter pylori in Parkinson’s disease. Journal of Parkinson’s Disease 8 (3): 367–374.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Cheng, D., H. Chang, S. Ma, J. Guo, G. She, F. Zhang, et al. 2018. Tiansi liquid modulates gut microbiota composition and tryptophankynurenine metabolism in rats with hydrocortisone-induced depression. Molecules 23 (11). Cheng, D., H. Chang, S. Ma, J. Guo, G. She, F. Zhang, et al. 2018. Tiansi liquid modulates gut microbiota composition and tryptophankynurenine metabolism in rats with hydrocortisone-induced depression. Molecules 23 (11).
44.
Zurück zum Zitat Miettinen, M., T.E. Pietilä, R.A. Kekkonen, M. Kankainen, S. Latvala, J. Pirhonen, et al. 2012. Nonpathogenic Lactobacillus rhamnosus activates the inflammasome and antiviral responses in human macrophages. Gut Microbes 3 (6): 510–522.PubMedPubMedCentralCrossRef Miettinen, M., T.E. Pietilä, R.A. Kekkonen, M. Kankainen, S. Latvala, J. Pirhonen, et al. 2012. Nonpathogenic Lactobacillus rhamnosus activates the inflammasome and antiviral responses in human macrophages. Gut Microbes 3 (6): 510–522.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Wong, M.L., A. Inserra, M.D. Lewis, C.A. Mastronardi, L. Leong, J. Choo, et al. 2016. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Molecular Psychiatry 21 (6): 797–805.PubMedPubMedCentralCrossRef Wong, M.L., A. Inserra, M.D. Lewis, C.A. Mastronardi, L. Leong, J. Choo, et al. 2016. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Molecular Psychiatry 21 (6): 797–805.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Wang, K., M. Liao, N. Zhou, L. Bao, K. Ma, Z. Zheng, et al. 2019. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Reports 26 (1): 222-235.e5.PubMedCrossRef Wang, K., M. Liao, N. Zhou, L. Bao, K. Ma, Z. Zheng, et al. 2019. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Reports 26 (1): 222-235.e5.PubMedCrossRef
47.
Zurück zum Zitat Gur, T.L., A.V. Palkar, T. Rajasekera, J. Allen, A. Niraula, J. Godbout, et al. 2019. Prenatal stress disrupts social behavior, cortical neurobiology and commensal microbes in adult male offspring. Behavioural Brain Research 359: 886–894.PubMedCrossRef Gur, T.L., A.V. Palkar, T. Rajasekera, J. Allen, A. Niraula, J. Godbout, et al. 2019. Prenatal stress disrupts social behavior, cortical neurobiology and commensal microbes in adult male offspring. Behavioural Brain Research 359: 886–894.PubMedCrossRef
48.
Zurück zum Zitat Naseribafrouei, A., K. Hestad, E. Avershina, M. Sekelja, A. Linløkken, R. Wilson, et al. 2014. Correlation between the human fecal microbiota and depression. Neurogastroenterology & Motility the Official Journal of the European Gastrointestinal Motility Society 26 (8): 1155–1162.CrossRef Naseribafrouei, A., K. Hestad, E. Avershina, M. Sekelja, A. Linløkken, R. Wilson, et al. 2014. Correlation between the human fecal microbiota and depression. Neurogastroenterology & Motility the Official Journal of the European Gastrointestinal Motility Society 26 (8): 1155–1162.CrossRef
49.
Zurück zum Zitat Wąsik, A., E. Możdżeń, I. Romańska, J. Michaluk, and L. Antkiewicz-Michaluk. 2013. Antidepressant-like activity of the endogenous amine, 1-methyl-1,2,3,4-tetrahydroisoquinoline in the behavioral despair test in the rat, and its neurochemical correlates: A comparison with the classical antidepressant, imipramine. European Journal of Pharmacology 700 (1–3): 110–117.PubMedCrossRef Wąsik, A., E. Możdżeń, I. Romańska, J. Michaluk, and L. Antkiewicz-Michaluk. 2013. Antidepressant-like activity of the endogenous amine, 1-methyl-1,2,3,4-tetrahydroisoquinoline in the behavioral despair test in the rat, and its neurochemical correlates: A comparison with the classical antidepressant, imipramine. European Journal of Pharmacology 700 (1–3): 110–117.PubMedCrossRef
50.
Zurück zum Zitat Bruce-Keller, A., J.M. Salbaum, and H.R. Berthoud. 2017. Harnessing gut microbes for mental health: Getting from here to there. Biological Psychiatry 83 (3): S0006322317319029. Bruce-Keller, A., J.M. Salbaum, and H.R. Berthoud. 2017. Harnessing gut microbes for mental health: Getting from here to there. Biological Psychiatry 83 (3): S0006322317319029.
Metadaten
Titel
Links Between Gut Dysbiosis and Neurotransmitter Disturbance in Chronic Restraint Stress-Induced Depressive Behaviours: the Role of Inflammation
verfasst von
Hai-long Yang
Meng-Meng Li
Man-Fei Zhou
Huai-Sha Xu
Fei Huan
Na Liu
Rong Gao
Jun Wang
Ning Zhang
Lei Jiang
Publikationsdatum
17.10.2021
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 6/2021
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-021-01514-y

Weitere Artikel der Ausgabe 6/2021

Inflammation 6/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.