Skip to main content
Erschienen in: European Radiology 12/2022

24.06.2022 | Head and Neck

Machine learning–based radiomics for histological classification of parotid tumors using morphological MRI: a comparative study

verfasst von: Zhiying He, Yitao Mao, Shanhong Lu, Lei Tan, Juxiong Xiao, Pingqing Tan, Hailin Zhang, Guo Li, Helei Yan, Jiaqi Tan, Donghai Huang, Yuanzheng Qiu, Xin Zhang, Xingwei Wang, Yong Liu

Erschienen in: European Radiology | Ausgabe 12/2022

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To evaluate the effectiveness of machine learning models based on morphological magnetic resonance imaging (MRI) radiomics in the classification of parotid tumors.

Methods

In total, 298 patients with parotid tumors were randomly assigned to a training and test set at a ratio of 7:3. Radiomics features were extracted from the morphological MRI images and screened using the Select K Best and LASSO algorithm. Three-step machine learning models with XGBoost, SVM, and DT algorithms were developed to classify the parotid neoplasms into four subtypes. The ROC curve was used to measure the performance in each step. Diagnostic confusion matrices of these models were calculated for the test cohort and compared with those of the radiologists.

Results

Six, twelve, and eight optimal features were selected in each step of the three-step process, respectively. XGBoost produced the highest area under the curve (AUC) for all three steps in the training cohort (0.857, 0.882, and 0.908, respectively), and for the first step in the test cohort (0.826), but produced slightly lower AUCs than SVM in the latter two steps in the test cohort (0.817 vs. 0.833, and 0.789 vs. 0.821, respectively). The total accuracies of XGBoost and SVM in the confusion matrices (70.8% and 59.6%) outperformed those of DT and the radiologist (46.1% and 49.2%).

Conclusion

This study demonstrated that machine learning models based on morphological MRI radiomics might be an assistive tool for parotid tumor classification, especially for preliminary screening in absence of more advanced scanning sequences, such as DWI.

Key Points

• Machine learning algorithms combined with morphological MRI radiomics could be useful in the preliminary classification of parotid tumors.
• XGBoost algorithm performed better than SVM and DT in subtype differentiation of parotid tumors, while DT seemed to have a poor validation performance.
• Using morphological MRI only, the XGBoost and SVM algorithms outperformed radiologists in the four-type classification task for parotid tumors, thus making these models a useful assistant diagnostic tool in clinical practice.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Gatta G, Guzzo M, Locati LD, McGurk M, Prott FJ (2020) Major and minor salivary gland tumours. Crit Rev Oncol Hematol 152:102959 PubMed Gatta G, Guzzo M, Locati LD, McGurk M, Prott FJ (2020) Major and minor salivary gland tumours. Crit Rev Oncol Hematol 152:102959 PubMed
2.
Zurück zum Zitat Spiro RH (1986) Salivary neoplasms: overview of a 35-year experience with 2,807 patients. Head Neck Surg 8:177–184 PubMed Spiro RH (1986) Salivary neoplasms: overview of a 35-year experience with 2,807 patients. Head Neck Surg 8:177–184 PubMed
3.
Zurück zum Zitat Lewis AG, Tong T, Maghami E (2016) Diagnosis and management of malignant salivary gland tumors of the parotid gland. Otolaryngol Clin North Am 49:343–380 PubMed Lewis AG, Tong T, Maghami E (2016) Diagnosis and management of malignant salivary gland tumors of the parotid gland. Otolaryngol Clin North Am 49:343–380 PubMed
4.
Zurück zum Zitat Liu CC, Jethwa AR, Khariwala SS, Johnson J, Shin JJ (2016) Sensitivity, specificity, and posttest probability of parotid fine-needle aspiration: a systematic review and meta-analysis. Otolaryngol Head Neck Surg 154:9–23 PubMed Liu CC, Jethwa AR, Khariwala SS, Johnson J, Shin JJ (2016) Sensitivity, specificity, and posttest probability of parotid fine-needle aspiration: a systematic review and meta-analysis. Otolaryngol Head Neck Surg 154:9–23 PubMed
5.
Zurück zum Zitat Singh Nanda KD, Mehta A, Nanda J (2012) Fine-needle aspiration cytology: a reliable tool in the diagnosis of salivary gland lesions. J Oral Pathol Med 41:106–112 PubMed Singh Nanda KD, Mehta A, Nanda J (2012) Fine-needle aspiration cytology: a reliable tool in the diagnosis of salivary gland lesions. J Oral Pathol Med 41:106–112 PubMed
6.
Zurück zum Zitat Stoia S, Baciut G, Lenghel M et al (2021) Cross-sectional imaging and cytologic investigations in the preoperative diagnosis of parotid gland tumors - an updated literature review. Bosn J Basic Med Sci 21:19–32 PubMedPubMedCentral Stoia S, Baciut G, Lenghel M et al (2021) Cross-sectional imaging and cytologic investigations in the preoperative diagnosis of parotid gland tumors - an updated literature review. Bosn J Basic Med Sci 21:19–32 PubMedPubMedCentral
7.
Zurück zum Zitat Soler R, Bargiela A, Requejo I, Rodriguez E, Rey JL, Sancristan F (1997) Pictorial review: MR imaging of parotid tumours. Clin Radiol 52:269–275 PubMed Soler R, Bargiela A, Requejo I, Rodriguez E, Rey JL, Sancristan F (1997) Pictorial review: MR imaging of parotid tumours. Clin Radiol 52:269–275 PubMed
8.
Zurück zum Zitat Paris J, Facon F, Pascal T, Chrestian MA, Moulin G, Zanaret M (2005) Preoperative diagnostic values of fine-needle cytology and MRI in parotid gland tumors. Eur Arch Otorhinolaryngol 262:27–31 PubMed Paris J, Facon F, Pascal T, Chrestian MA, Moulin G, Zanaret M (2005) Preoperative diagnostic values of fine-needle cytology and MRI in parotid gland tumors. Eur Arch Otorhinolaryngol 262:27–31 PubMed
9.
Zurück zum Zitat Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446 PubMedPubMedCentral Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446 PubMedPubMedCentral
10.
Zurück zum Zitat Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577 PubMed Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577 PubMed
13.
Zurück zum Zitat Mouraviev A, Detsky J, Sahgal A et al (2020) Use of radiomics for the prediction of local control of brain metastases after stereotactic radiosurgery. Neuro Oncol 22:797–805 PubMedPubMedCentral Mouraviev A, Detsky J, Sahgal A et al (2020) Use of radiomics for the prediction of local control of brain metastases after stereotactic radiosurgery. Neuro Oncol 22:797–805 PubMedPubMedCentral
14.
Zurück zum Zitat Woznicki P, Westhoff N, Huber T et al (2020) Multiparametric MRI for prostate cancer characterization: combined use of radiomics model with PI-RADS and clinical parameters. Cancers (Basel) 12:1767 PubMed Woznicki P, Westhoff N, Huber T et al (2020) Multiparametric MRI for prostate cancer characterization: combined use of radiomics model with PI-RADS and clinical parameters. Cancers (Basel) 12:1767 PubMed
15.
Zurück zum Zitat Linning E, Lu L, Li L, Yang H, Schwartz LH, Zhao B (2019) Radiomics for classification of lung cancer histological subtypes based on nonenhanced computed tomography. Acad Radiol 26:1245–1252 Linning E, Lu L, Li L, Yang H, Schwartz LH, Zhao B (2019) Radiomics for classification of lung cancer histological subtypes based on nonenhanced computed tomography. Acad Radiol 26:1245–1252
16.
Zurück zum Zitat Fruehwald-Pallamar J, Czerny C, Holzer-Fruehwald L et al (2013) Texture-based and diffusion-weighted discrimination of parotid gland lesions on MR images at 3.0 Tesla. NMR Biomed 26:1372–1379 PubMed Fruehwald-Pallamar J, Czerny C, Holzer-Fruehwald L et al (2013) Texture-based and diffusion-weighted discrimination of parotid gland lesions on MR images at 3.0 Tesla. NMR Biomed 26:1372–1379 PubMed
17.
Zurück zum Zitat Vernuccio F, Arnone F, Cannella R et al (2021) Diagnostic performance of qualitative and radiomics approach to parotid gland tumors: which is the added benefit of texture analysis? Br J Radiol 94:20210340 PubMedPubMedCentral Vernuccio F, Arnone F, Cannella R et al (2021) Diagnostic performance of qualitative and radiomics approach to parotid gland tumors: which is the added benefit of texture analysis? Br J Radiol 94:20210340 PubMedPubMedCentral
18.
Zurück zum Zitat Piludu F, Marzi S, Ravanelli M et al (2021) MRI-based radiomics to differentiate between benign and malignant parotid tumors with external validation. Front Oncol 11:656918 PubMedPubMedCentral Piludu F, Marzi S, Ravanelli M et al (2021) MRI-based radiomics to differentiate between benign and malignant parotid tumors with external validation. Front Oncol 11:656918 PubMedPubMedCentral
19.
Zurück zum Zitat Gabelloni M, Faggioni L, Attanasio S et al (2020) Can magnetic resonance radiomics analysis discriminate parotid gland tumors? A pilot study. Diagnostics (Basel) 10:900 PubMed Gabelloni M, Faggioni L, Attanasio S et al (2020) Can magnetic resonance radiomics analysis discriminate parotid gland tumors? A pilot study. Diagnostics (Basel) 10:900 PubMed
20.
Zurück zum Zitat Mikaszewski B, Markiet K, Smugala A, Stodulski D, Szurowska E, Stankiewicz C (2018) An algorithm for preoperative differential diagnostics of parotid tumours on the basis of their dynamic and diffusion-weighted magnetic resonance images: a retrospective analysis of 158 cases. Folia Morphol (Warsz) 77:29–35 PubMed Mikaszewski B, Markiet K, Smugala A, Stodulski D, Szurowska E, Stankiewicz C (2018) An algorithm for preoperative differential diagnostics of parotid tumours on the basis of their dynamic and diffusion-weighted magnetic resonance images: a retrospective analysis of 158 cases. Folia Morphol (Warsz) 77:29–35 PubMed
21.
Zurück zum Zitat Ma G, Zhu LN, Su GY et al (2018) Histogram analysis of apparent diffusion coefficient maps for differentiating malignant from benign parotid gland tumors. Eur Arch Otorhinolaryngol 275:2151–2157 PubMed Ma G, Zhu LN, Su GY et al (2018) Histogram analysis of apparent diffusion coefficient maps for differentiating malignant from benign parotid gland tumors. Eur Arch Otorhinolaryngol 275:2151–2157 PubMed
22.
Zurück zum Zitat Zheng YM, Chen J, Xu Q et al (2021) Development and validation of an MRI-based radiomics nomogram for distinguishing Warthin’s tumour from pleomorphic adenomas of the parotid gland. Dentomaxillofac Radiol 50:20210023 PubMedPubMedCentral Zheng YM, Chen J, Xu Q et al (2021) Development and validation of an MRI-based radiomics nomogram for distinguishing Warthin’s tumour from pleomorphic adenomas of the parotid gland. Dentomaxillofac Radiol 50:20210023 PubMedPubMedCentral
23.
Zurück zum Zitat Patella F, Franceschelli G, Petrillo M et al (2018) A multiparametric analysis combining DCE-MRI- and IVIM -derived parameters to improve differentiation of parotid tumors: a pilot study. Future Oncol 14:2893–2903 PubMed Patella F, Franceschelli G, Petrillo M et al (2018) A multiparametric analysis combining DCE-MRI- and IVIM -derived parameters to improve differentiation of parotid tumors: a pilot study. Future Oncol 14:2893–2903 PubMed
24.
Zurück zum Zitat Liu Y, Zheng J, Lu X et al (2021) Radiomics-based comparison of MRI and CT for differentiating pleomorphic adenomas and Warthin tumors of the parotid gland: a retrospective study. Oral Surg Oral Med Oral Pathol Oral Radiol 131:591–599 PubMed Liu Y, Zheng J, Lu X et al (2021) Radiomics-based comparison of MRI and CT for differentiating pleomorphic adenomas and Warthin tumors of the parotid gland: a retrospective study. Oral Surg Oral Med Oral Pathol Oral Radiol 131:591–599 PubMed
25.
Zurück zum Zitat Dos Santos WP, Perez Gomes JP, Nussi AD et al (2020) Morphology, volume, and density characteristics of the parotid glands before and after chemoradiation therapy in patients with head and neck tumors. Int J Dent 2020:8176260 PubMedPubMedCentral Dos Santos WP, Perez Gomes JP, Nussi AD et al (2020) Morphology, volume, and density characteristics of the parotid glands before and after chemoradiation therapy in patients with head and neck tumors. Int J Dent 2020:8176260 PubMedPubMedCentral
26.
Zurück zum Zitat Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163 CrossRefPubMedPubMedCentral Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163 CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Bakir-Gungor B, Bulut O, Jabeer A, Nalbantoglu OU, Yousef M (2021) Discovering potential taxonomic biomarkers of type 2 diabetes from human gut microbiota via different feature selection methods. Front Microbiol 12:628426 PubMedPubMedCentral Bakir-Gungor B, Bulut O, Jabeer A, Nalbantoglu OU, Yousef M (2021) Discovering potential taxonomic biomarkers of type 2 diabetes from human gut microbiota via different feature selection methods. Front Microbiol 12:628426 PubMedPubMedCentral
28.
Zurück zum Zitat Sauerbrei W, Royston P, Binder H (2007) Selection of important variables and determination of functional form for continuous predictors in multivariable model building. Stat Med 26:5512–5528 PubMed Sauerbrei W, Royston P, Binder H (2007) Selection of important variables and determination of functional form for continuous predictors in multivariable model building. Stat Med 26:5512–5528 PubMed
29.
Zurück zum Zitat Zhang Z, Song C, Zhang Y, Wen B, Zhu J, Cheng J (2019) Apparent diffusion coefficient (ADC) histogram analysis: differentiation of benign from malignant parotid gland tumors using readout-segmented diffusion-weighted imaging. Dentomaxillofac Radiol 48:20190100 PubMedPubMedCentral Zhang Z, Song C, Zhang Y, Wen B, Zhu J, Cheng J (2019) Apparent diffusion coefficient (ADC) histogram analysis: differentiation of benign from malignant parotid gland tumors using readout-segmented diffusion-weighted imaging. Dentomaxillofac Radiol 48:20190100 PubMedPubMedCentral
30.
Zurück zum Zitat Sarioglu O, Sarioglu FC, Akdogan AI et al (2020) MRI-based texture analysis to differentiate the most common parotid tumours. Clin Radiol 75:877.e815–877.e823 Sarioglu O, Sarioglu FC, Akdogan AI et al (2020) MRI-based texture analysis to differentiate the most common parotid tumours. Clin Radiol 75:877.e815–877.e823
32.
Zurück zum Zitat Nardi C, Tomei M, Pietragalla M et al (2021) Texture analysis in the characterization of parotid salivary gland lesions: a study on MR diffusion weighted imaging. Eur J Radiol 136:109529 PubMed Nardi C, Tomei M, Pietragalla M et al (2021) Texture analysis in the characterization of parotid salivary gland lesions: a study on MR diffusion weighted imaging. Eur J Radiol 136:109529 PubMed
33.
Zurück zum Zitat Liu Y, Zheng J, Zhao J et al (2021) Magnetic resonance image biomarkers improve differentiation of benign and malignant parotid tumors through diagnostic model analysis. Oral Radiol 37:658–668 PubMed Liu Y, Zheng J, Zhao J et al (2021) Magnetic resonance image biomarkers improve differentiation of benign and malignant parotid tumors through diagnostic model analysis. Oral Radiol 37:658–668 PubMed
34.
Zurück zum Zitat Zheng YM, Li J, Liu S et al (2021) MRI-Based radiomics nomogram for differentiation of benign and malignant lesions of the parotid gland. Eur Radiol 31:4042–4052 PubMed Zheng YM, Li J, Liu S et al (2021) MRI-Based radiomics nomogram for differentiation of benign and malignant lesions of the parotid gland. Eur Radiol 31:4042–4052 PubMed
35.
Zurück zum Zitat Papanikolaou N, Matos C, Koh DM (2020) How to develop a meaningful radiomic signature for clinical use in oncologic patients. Cancer Imaging 20:33 PubMedPubMedCentral Papanikolaou N, Matos C, Koh DM (2020) How to develop a meaningful radiomic signature for clinical use in oncologic patients. Cancer Imaging 20:33 PubMedPubMedCentral
36.
Zurück zum Zitat Kim DW, Jang HY, Kim KW, Shin Y, Park SH (2019) Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J Radiol 20:405–410 PubMedPubMedCentral Kim DW, Jang HY, Kim KW, Shin Y, Park SH (2019) Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J Radiol 20:405–410 PubMedPubMedCentral
37.
Zurück zum Zitat van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107 PubMedPubMedCentral van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107 PubMedPubMedCentral
38.
Zurück zum Zitat Xu H, Deng L, Tian R, Ma X (2021) Editorial: novel methods for oncologic imaging analysis: radiomics, machine learning, and artificial intelligence. Front Oncol 11:628310 PubMedPubMedCentral Xu H, Deng L, Tian R, Ma X (2021) Editorial: novel methods for oncologic imaging analysis: radiomics, machine learning, and artificial intelligence. Front Oncol 11:628310 PubMedPubMedCentral
40.
Zurück zum Zitat Ditmer A, Zhang B, Shujaat T et al (2018) Diagnostic accuracy of MRI texture analysis for grading gliomas. J Neurooncol 140:583–589 PubMed Ditmer A, Zhang B, Shujaat T et al (2018) Diagnostic accuracy of MRI texture analysis for grading gliomas. J Neurooncol 140:583–589 PubMed
41.
Zurück zum Zitat Ludwig CG, Lauric A, Malek JA, Mulligan R, Malek AM (2021) Performance of radiomics derived morphological features for prediction of aneurysm rupture status. J Neurointerv Surg 13:755–761 PubMed Ludwig CG, Lauric A, Malek JA, Mulligan R, Malek AM (2021) Performance of radiomics derived morphological features for prediction of aneurysm rupture status. J Neurointerv Surg 13:755–761 PubMed
42.
Zurück zum Zitat Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 785-794 Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 785-794
43.
Zurück zum Zitat Ogunleye A, Wang QG (2020) XGBoost model for chronic kidney disease diagnosis. IEEE/ACM Trans Comput Biol Bioinform 17:2131–2140 PubMed Ogunleye A, Wang QG (2020) XGBoost model for chronic kidney disease diagnosis. IEEE/ACM Trans Comput Biol Bioinform 17:2131–2140 PubMed
44.
Zurück zum Zitat Davagdorj K, Pham VH, Theera-Umpon N, Ryu KH (2020) XGBoost-based framework for smoking-induced noncommunicable disease prediction. Int J Environ Res Public Health 17:6513 PubMedPubMedCentral Davagdorj K, Pham VH, Theera-Umpon N, Ryu KH (2020) XGBoost-based framework for smoking-induced noncommunicable disease prediction. Int J Environ Res Public Health 17:6513 PubMedPubMedCentral
45.
Zurück zum Zitat Li W, Yin Y, Quan X, Zhang H (2019) Gene expression value prediction based on XGBoost algorithm. Front Genet 10:1077 PubMedPubMedCentral Li W, Yin Y, Quan X, Zhang H (2019) Gene expression value prediction based on XGBoost algorithm. Front Genet 10:1077 PubMedPubMedCentral
46.
Zurück zum Zitat Schölkopf B (2003) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, MA, United States Schölkopf B (2003) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, MA, United States
47.
Zurück zum Zitat Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W (2018) Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics Proteomics 15:41–51 PubMed Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W (2018) Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics Proteomics 15:41–51 PubMed
48.
Zurück zum Zitat Geurts P, Irrthum A, Wehenkel L (2009) Supervised learning with decision tree-based methods in computational and systems biology. Mol Biosyst 5:1593–1605 PubMed Geurts P, Irrthum A, Wehenkel L (2009) Supervised learning with decision tree-based methods in computational and systems biology. Mol Biosyst 5:1593–1605 PubMed
49.
Zurück zum Zitat Linden A (2006) Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis. J Eval Clin Pract 12:132–139 PubMed Linden A (2006) Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis. J Eval Clin Pract 12:132–139 PubMed
50.
Zurück zum Zitat Karaman Y, Özgür A, Apaydın D, Özcan C, Arpacı R, Duce MN (2015) Role of diffusion-weighted magnetic resonance imaging in the differentiation of parotid gland tumors. Oral Radiology 32:22–32 Karaman Y, Özgür A, Apaydın D, Özcan C, Arpacı R, Duce MN (2015) Role of diffusion-weighted magnetic resonance imaging in the differentiation of parotid gland tumors. Oral Radiology 32:22–32
51.
Zurück zum Zitat Yerli H, Aydin E, Haberal N, Harman A, Kaskati T, Alibek S (2010) Diagnosing common parotid tumours with magnetic resonance imaging including diffusion-weighted imaging vs fine-needle aspiration cytology: a comparative study. Dentomaxillofac Radiol 39:349–355 PubMedPubMedCentral Yerli H, Aydin E, Haberal N, Harman A, Kaskati T, Alibek S (2010) Diagnosing common parotid tumours with magnetic resonance imaging including diffusion-weighted imaging vs fine-needle aspiration cytology: a comparative study. Dentomaxillofac Radiol 39:349–355 PubMedPubMedCentral
52.
Zurück zum Zitat Bruvo M, Mahmood F (2021) Apparent diffusion coefficient measurement of the parotid gland parenchyma. Quant Imaging Med Surg 11:3812–3829 PubMedPubMedCentral Bruvo M, Mahmood F (2021) Apparent diffusion coefficient measurement of the parotid gland parenchyma. Quant Imaging Med Surg 11:3812–3829 PubMedPubMedCentral
53.
Zurück zum Zitat Xu Z, Zheng S, Pan A, Cheng X, Gao M (2019) A multiparametric analysis based on DCE-MRI to improve the accuracy of parotid tumor discrimination. Eur J Nucl Med Mol Imaging 46:2228–2234 PubMed Xu Z, Zheng S, Pan A, Cheng X, Gao M (2019) A multiparametric analysis based on DCE-MRI to improve the accuracy of parotid tumor discrimination. Eur J Nucl Med Mol Imaging 46:2228–2234 PubMed
54.
Zurück zum Zitat Elmokadem AH, Abdel Khalek AM, Abdel Wahab RM et al (2019) Diagnostic accuracy of multiparametric magnetic resonance imaging for differentiation between parotid neoplasms. Can Assoc Radiol J 70:264–272 PubMed Elmokadem AH, Abdel Khalek AM, Abdel Wahab RM et al (2019) Diagnostic accuracy of multiparametric magnetic resonance imaging for differentiation between parotid neoplasms. Can Assoc Radiol J 70:264–272 PubMed
55.
Zurück zum Zitat Yuan Y, Tang W, Tao X (2016) Parotid gland lesions: separate and combined diagnostic value of conventional MRI, diffusion-weighted imaging and dynamic contrast-enhanced MRI. Br J Radiol 89:20150912 PubMedPubMedCentral Yuan Y, Tang W, Tao X (2016) Parotid gland lesions: separate and combined diagnostic value of conventional MRI, diffusion-weighted imaging and dynamic contrast-enhanced MRI. Br J Radiol 89:20150912 PubMedPubMedCentral
56.
Zurück zum Zitat Stefanovic X, Al Tabaa Y, Gascou G et al (2017) Magnetic resonance imaging of parotid gland tumors: dynamic contrast-enhanced sequence evaluation. J Comput Assist Tomogr 41:541–546 PubMed Stefanovic X, Al Tabaa Y, Gascou G et al (2017) Magnetic resonance imaging of parotid gland tumors: dynamic contrast-enhanced sequence evaluation. J Comput Assist Tomogr 41:541–546 PubMed
57.
Zurück zum Zitat Mogen JL, Block KT, Bansal NK et al (2019) Dynamic contrast-enhanced MRI to differentiate parotid neoplasms using golden-angle radial sparse parallel imaging. AJNR Am J Neuroradiol 40:1029–1036 PubMedPubMedCentral Mogen JL, Block KT, Bansal NK et al (2019) Dynamic contrast-enhanced MRI to differentiate parotid neoplasms using golden-angle radial sparse parallel imaging. AJNR Am J Neuroradiol 40:1029–1036 PubMedPubMedCentral
58.
Zurück zum Zitat Chang YJ, Huang TY, Liu YJ, Chung HW, Juan CJ (2021) Classification of parotid gland tumors by using multimodal MRI and deep learning. NMR Biomed 34:e4408 PubMed Chang YJ, Huang TY, Liu YJ, Chung HW, Juan CJ (2021) Classification of parotid gland tumors by using multimodal MRI and deep learning. NMR Biomed 34:e4408 PubMed
Metadaten
Titel
Machine learning–based radiomics for histological classification of parotid tumors using morphological MRI: a comparative study
verfasst von
Zhiying He
Yitao Mao
Shanhong Lu
Lei Tan
Juxiong Xiao
Pingqing Tan
Hailin Zhang
Guo Li
Helei Yan
Jiaqi Tan
Donghai Huang
Yuanzheng Qiu
Xin Zhang
Xingwei Wang
Yong Liu
Publikationsdatum
24.06.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 12/2022
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-022-08943-9

Weitere Artikel der Ausgabe 12/2022

European Radiology 12/2022 Zur Ausgabe

Update Radiologie

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.