Skip to main content
Erschienen in: European Radiology 12/2022

24.06.2022 | Magnetic Resonance

MRI-based radiomics signature for identification of invisible basal cisterns changes in tuberculous meningitis: a preliminary multicenter study

verfasst von: Qiong Ma, Yinqiao Yi, Tiejun Liu, Xinnian Wen, Fei Shan, Feng Feng, Qinqin Yan, Jie Shen, Guang Yang, Yuxin Shi

Erschienen in: European Radiology | Ausgabe 12/2022

Einloggen, um Zugang zu erhalten

Abstract

Objective

To develop and evaluate a radiomics signature based on magnetic resonance imaging (MRI) from multicenter datasets for identification of invisible basal cisterns changes in tuberculous meningitis (TBM) patients.

Methods

Our retrospective study enrolled 184 TBM patients and 187 non-TBM controls from 3 Chinese hospitals (training dataset, 158 TBM patients and 159 non-TBM controls; testing dataset, 26 TBM patients and 28 non-TBM controls). nnU-Net was used to segment basal cisterns in fluid-attenuated inversion recovery (FLAIR) images. Subsequently, radiomics features were extracted from segmented basal cisterns in FLAIR and T2-weighted (T2W) images. Feature selection was carried out in three steps. Support vector machine (SVM) and logistic regression (LR) classifiers were applied to construct the radiomics signature to directly identify basal cisterns changes in TBM patients. Finally, the diagnostic performance was evaluated by the receiver operating characteristic (ROC) curve analysis, calibration curve, and decision curve analysis (DCA).

Results

The segmentation model achieved the mean Dice coefficients of 0.920 and 0.727 in the training and testing datasets, respectively. The SVM model with 7 T2WI–based radiomics features achieved best discrimination capability for basal cisterns changes with an AUC of 0.796 (95% CI, 0.744–0.847) in the training dataset, and an AUC of 0.751 (95% CI, 0.617–0.886) with good calibration in the testing dataset. DCA confirmed its clinical usefulness.

Conclusion

The T2WI–based radiomics signature combined with deep learning segmentation could provide a fully automatic, non-invasive tool to identify invisible changes of basal cisterns, which has the potential to assist in the diagnosis of TBM.

Key Points

• The T2WI–based radiomics signature was useful for identifying invisible basal cistern changes in TBM.
• The nnU-Net model achieved acceptable results for the auto-segmentation of basal cisterns.
• Combining radiomics and deep learning segmentation provided an automatic, non-invasive approach to assist in the diagnosis of TBM.
Literatur
2.
Zurück zum Zitat Donovan J, Figaji A, Imran D, Phu NH, Rohlwink U, Thwaites GE (2019) The neurocritical care of tuberculous meningitis. Lancet Neurol 18:771–783 CrossRefPubMed Donovan J, Figaji A, Imran D, Phu NH, Rohlwink U, Thwaites GE (2019) The neurocritical care of tuberculous meningitis. Lancet Neurol 18:771–783 CrossRefPubMed
3.
Zurück zum Zitat Imran D, Estiasari R, Maharani K et al (2018) Presentation, etiology, and outcome of brain infections in an Indonesian hospital: a cohort study. Neurol Clin Pract 8:379–388 CrossRefPubMedPubMedCentral Imran D, Estiasari R, Maharani K et al (2018) Presentation, etiology, and outcome of brain infections in an Indonesian hospital: a cohort study. Neurol Clin Pract 8:379–388 CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Wang YY, Xie BD (2018) Progress on diagnosis of tuberculous meningitis. Methods Mol Biol 1754:375–386 CrossRefPubMed Wang YY, Xie BD (2018) Progress on diagnosis of tuberculous meningitis. Methods Mol Biol 1754:375–386 CrossRefPubMed
5.
Zurück zum Zitat Marais S, Thwaites G, Schoeman JF et al (2010) Tuberculous meningitis: a uniform case definition for use in clinical research. Lancet Infect Dis 10:803–812 CrossRefPubMed Marais S, Thwaites G, Schoeman JF et al (2010) Tuberculous meningitis: a uniform case definition for use in clinical research. Lancet Infect Dis 10:803–812 CrossRefPubMed
6.
Zurück zum Zitat Bernaerts A, Vanhoenacker FM, Parizel PM et al (2003) Tuberculosis of the central nervous system: overview of neuroradiological findings. Eur Radiol 13:1876–1890 CrossRefPubMed Bernaerts A, Vanhoenacker FM, Parizel PM et al (2003) Tuberculosis of the central nervous system: overview of neuroradiological findings. Eur Radiol 13:1876–1890 CrossRefPubMed
7.
Zurück zum Zitat Khatri GD, Krishnan V, Antil N, Saigal G (2018) Magnetic resonance imaging spectrum of intracranial tubercular lesions: one disease, many faces. Pol J Radiol 83:e524–e535 CrossRefPubMedPubMedCentral Khatri GD, Krishnan V, Antil N, Saigal G (2018) Magnetic resonance imaging spectrum of intracranial tubercular lesions: one disease, many faces. Pol J Radiol 83:e524–e535 CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Wilkinson RJ, Rohlwink U, Misra UK et al (2017) Tuberculous meningitis. Nat Rev Neurol 13:581–598 CrossRefPubMed Wilkinson RJ, Rohlwink U, Misra UK et al (2017) Tuberculous meningitis. Nat Rev Neurol 13:581–598 CrossRefPubMed
9.
Zurück zum Zitat Kumar S, Singh P, Vyas S et al (2021) Assessment of blood-brain barrier integrity in tuberculous meningitis using dynamic contrast-enhanced MR perfusion. Indian J Radiol Imaging 31:30–36 PubMedPubMedCentral Kumar S, Singh P, Vyas S et al (2021) Assessment of blood-brain barrier integrity in tuberculous meningitis using dynamic contrast-enhanced MR perfusion. Indian J Radiol Imaging 31:30–36 PubMedPubMedCentral
10.
Zurück zum Zitat Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446 CrossRefPubMedPubMedCentral Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446 CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Reginelli A, Nardone V, Giacobbe G et al (2021) Radiomics as a new frontier of imaging for cancer prognosis: a narrative review. Diagnostics (Basel) 11:1796 CrossRefPubMedPubMedCentral Reginelli A, Nardone V, Giacobbe G et al (2021) Radiomics as a new frontier of imaging for cancer prognosis: a narrative review. Diagnostics (Basel) 11:1796 CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Abdel Razek AAK, Alksas A, Shehata M et al (2021) Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging. Insights Imaging 12:152 CrossRefPubMedPubMedCentral Abdel Razek AAK, Alksas A, Shehata M et al (2021) Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging. Insights Imaging 12:152 CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Stanzione A, Verde F, Romeo V, Boccadifuoco F, Mainenti PP, Maurea S (2021) Radiomics and machine learning applications in rectal cancer: current update and future perspectives. World J Gastroenterol 27:5306–5321 CrossRefPubMedPubMedCentral Stanzione A, Verde F, Romeo V, Boccadifuoco F, Mainenti PP, Maurea S (2021) Radiomics and machine learning applications in rectal cancer: current update and future perspectives. World J Gastroenterol 27:5306–5321 CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Kassner A, Liu F, Thornhill RE, Tomlinson G, Mikulis DJ (2009) Prediction of hemorrhagic transformation in acute ischemic stroke using texture analysis of postcontrast T1-weighted MR images. J Magn Reson Imaging 30:933–941 CrossRefPubMed Kassner A, Liu F, Thornhill RE, Tomlinson G, Mikulis DJ (2009) Prediction of hemorrhagic transformation in acute ischemic stroke using texture analysis of postcontrast T1-weighted MR images. J Magn Reson Imaging 30:933–941 CrossRefPubMed
15.
Zurück zum Zitat Arnold PG, Kaya E, Reisert M et al (2022) Support vector machine-based spontaneous intracranial hypotension detection on brain MRI. Clin Neuroradiol 32:225–230 CrossRefPubMed Arnold PG, Kaya E, Reisert M et al (2022) Support vector machine-based spontaneous intracranial hypotension detection on brain MRI. Clin Neuroradiol 32:225–230 CrossRefPubMed
16.
Zurück zum Zitat Korez R, Likar B, Pernuš F, Vrtovec T (2016) Model-based segmentation of vertebral bodies from MR images with 3D CNNs. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W (eds) Medical image computing and computer-assisted intervention – MICCAI 2016. Springer International Publishing, Cham, pp 433–441 CrossRef Korez R, Likar B, Pernuš F, Vrtovec T (2016) Model-based segmentation of vertebral bodies from MR images with 3D CNNs. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W (eds) Medical image computing and computer-assisted intervention – MICCAI 2016. Springer International Publishing, Cham, pp 433–441 CrossRef
17.
Zurück zum Zitat Moeskops P, Wolterink JM, van der Velden BHM et al (2016) Deep learning for multi-task medical image segmentation in multiple modalities. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. Springer International Publishing, Cham, pp 478–486 CrossRef Moeskops P, Wolterink JM, van der Velden BHM et al (2016) Deep learning for multi-task medical image segmentation in multiple modalities. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. Springer International Publishing, Cham, pp 478–486 CrossRef
18.
Zurück zum Zitat Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18:203–211 CrossRefPubMed Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18:203–211 CrossRefPubMed
19.
Zurück zum Zitat Savjani R (2021) nnU-Net: further automating biomedical image autosegmentation. Radiol Imaging. Cancer 3:e209039 Savjani R (2021) nnU-Net: further automating biomedical image autosegmentation. Radiol Imaging. Cancer 3:e209039
20.
Zurück zum Zitat Ma J, Wang Y, An X et al (2021) Toward data-efficient learning: a benchmark for COVID-19 CT lung and infection segmentation. Med Phys 48:1197–1210 CrossRefPubMed Ma J, Wang Y, An X et al (2021) Toward data-efficient learning: a benchmark for COVID-19 CT lung and infection segmentation. Med Phys 48:1197–1210 CrossRefPubMed
21.
Zurück zum Zitat Heller N, Isensee F, Maier-Hein KH et al (2021) The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: results of the KiTS19 challenge. Med Image Anal 67:101821 CrossRefPubMed Heller N, Isensee F, Maier-Hein KH et al (2021) The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: results of the KiTS19 challenge. Med Image Anal 67:101821 CrossRefPubMed
22.
Zurück zum Zitat Huo L, Hu X, Xiao Q, Gu Y, Chu X, Jiang L (2021) Segmentation of whole breast and fibroglandular tissue using nnU-Net in dynamic contrast enhanced MR images. Magn Reson Imaging 82:31–41 CrossRefPubMed Huo L, Hu X, Xiao Q, Gu Y, Chu X, Jiang L (2021) Segmentation of whole breast and fibroglandular tissue using nnU-Net in dynamic contrast enhanced MR images. Magn Reson Imaging 82:31–41 CrossRefPubMed
23.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Springer International Publishing, Cham, pp 234–241 CrossRef Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Springer International Publishing, Cham, pp 234–241 CrossRef
24.
25.
Zurück zum Zitat van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107 CrossRefPubMedPubMedCentral van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107 CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Davis AG, Rohlwink UK, Proust A, Figaji AA, Wilkinson RJ (2019) The pathogenesis of tuberculous meningitis. J Leukoc Biol 105:267–280 CrossRefPubMed Davis AG, Rohlwink UK, Proust A, Figaji AA, Wilkinson RJ (2019) The pathogenesis of tuberculous meningitis. J Leukoc Biol 105:267–280 CrossRefPubMed
27.
Zurück zum Zitat Simmons CP, Thwaites GE, Quyen NT et al (2006) Pretreatment intracerebral and peripheral blood immune responses in Vietnamese adults with tuberculous meningitis: diagnostic value and relationship to disease severity and outcome. J Immunol 176:2007–2014 CrossRefPubMed Simmons CP, Thwaites GE, Quyen NT et al (2006) Pretreatment intracerebral and peripheral blood immune responses in Vietnamese adults with tuberculous meningitis: diagnostic value and relationship to disease severity and outcome. J Immunol 176:2007–2014 CrossRefPubMed
28.
Zurück zum Zitat Cresswell FV, Davis AG, Sharma K et al (2019) Recent developments in tuberculous meningitis pathogenesis and diagnostics. Wellcome Open Res 4:164 CrossRefPubMed Cresswell FV, Davis AG, Sharma K et al (2019) Recent developments in tuberculous meningitis pathogenesis and diagnostics. Wellcome Open Res 4:164 CrossRefPubMed
29.
Zurück zum Zitat Choudhary N, Vyas S, Modi M et al (2021) MR vessel wall imaging in tubercular meningitis. Neuroradiology 63:1627–1634 CrossRefPubMed Choudhary N, Vyas S, Modi M et al (2021) MR vessel wall imaging in tubercular meningitis. Neuroradiology 63:1627–1634 CrossRefPubMed
31.
Zurück zum Zitat Vadivelu S, Effendi S, Starke JR, Luerssen TG, Jea A (2013) A review of the neurological and neurosurgical implications of tuberculosis in children. Clin Pediatr (Phila) 52:1135–1143 CrossRefPubMed Vadivelu S, Effendi S, Starke JR, Luerssen TG, Jea A (2013) A review of the neurological and neurosurgical implications of tuberculosis in children. Clin Pediatr (Phila) 52:1135–1143 CrossRefPubMed
32.
Zurück zum Zitat Zhou X, Yi Y, Liu Z et al (2019) Radiomics-based pretherapeutic prediction of non-response to neoadjuvant therapy in locally advanced rectal cancer. Ann Surg Oncol 26:1676–1684 CrossRefPubMedPubMedCentral Zhou X, Yi Y, Liu Z et al (2019) Radiomics-based pretherapeutic prediction of non-response to neoadjuvant therapy in locally advanced rectal cancer. Ann Surg Oncol 26:1676–1684 CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Kamran S, Bener AB, Alper D, Bakshi R (2004) Role of fluid-attenuated inversion recovery in the diagnosis of meningitis: comparison with contrast-enhanced magnetic resonance imaging. J Comput Assist Tomogr 28:68–72 CrossRefPubMed Kamran S, Bener AB, Alper D, Bakshi R (2004) Role of fluid-attenuated inversion recovery in the diagnosis of meningitis: comparison with contrast-enhanced magnetic resonance imaging. J Comput Assist Tomogr 28:68–72 CrossRefPubMed
Metadaten
Titel
MRI-based radiomics signature for identification of invisible basal cisterns changes in tuberculous meningitis: a preliminary multicenter study
verfasst von
Qiong Ma
Yinqiao Yi
Tiejun Liu
Xinnian Wen
Fei Shan
Feng Feng
Qinqin Yan
Jie Shen
Guang Yang
Yuxin Shi
Publikationsdatum
24.06.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 12/2022
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-022-08911-3

Weitere Artikel der Ausgabe 12/2022

European Radiology 12/2022 Zur Ausgabe

Update Radiologie

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.