Skip to main content
Erschienen in: Pediatric Radiology 13/2022

15.07.2022 | Original Article

Organ-based tube current modulation and bismuth eye shielding in pediatric head computed tomography

verfasst von: Stefan Markart, Tim S. Fischer, Simon Wildermuth, Tobias J. Dietrich, Hatem Alkadhi, Sebastian Leschka, Sabine Guesewell, Michael R. Ditchfield, Ismail Oezden, Gerd Lutters, Stephan L. Waelti

Erschienen in: Pediatric Radiology | Ausgabe 13/2022

Einloggen, um Zugang zu erhalten

Abstract

Background

Exposure of the eye lens to ionizing radiation results in cataract. Several dose optimization techniques to protect the lens are available for computed tomography (CT).

Objective

The radiation dose to the eye lens, volume CT dose index (CTDIvol) and image quality of various methods of dose optimization were evaluated for pediatric head CT: automated tube current modulation (ATCM), automated tube voltage selection (ATVS), organ-based tube current modulation (OBTCM) and bismuth shielding.

Materials and methods

An anthropomorphic phantom of a 5-year-old child was scanned with nine protocols: no dose optimization technique and then adding different dose optimization techniques alone and in combination. Dose to the eye, thyroid and breast were estimated using metal oxide semiconductor field effect transistor (MOSFET) dosimetry. CTDIvol, influence of timing of shield placement, image noise and attenuation values in 13 regions of interest of the head and subjective image quality were compared.

Results

The eye shield significantly reduced the eye lens dose when used alone, to a similar degree as when using all software-based techniques together. When used in combination with software-based techniques, the shield reduced the eye lens dose by up to 45% compared to the no dose optimization technique. Noise was significantly increased by the shield, most pronounced in the anterior portion of the eye.

Conclusion

The combination of ATCM, ATVS, OBTCM and a bismuth shield, with the shield placed after acquiring the localizer image, should be considered to reduce the radiation dose to the eye lens in pediatric head CT.
Literatur
1.
Zurück zum Zitat Ainsbury EA, Barnard S, Bright S et al (2016) Ionizing radiation induced cataracts: Recent biological and mechanistic developments and perspectives for future research. Mutat Res Rev Mutat Res 770(Pt B):238–261CrossRefPubMed Ainsbury EA, Barnard S, Bright S et al (2016) Ionizing radiation induced cataracts: Recent biological and mechanistic developments and perspectives for future research. Mutat Res Rev Mutat Res 770(Pt B):238–261CrossRefPubMed
2.
Zurück zum Zitat Poppe E (1957) Experimental investigations on cataract formation following whole-body roentgen irradiation. Acta Radiol 47:138–148CrossRefPubMed Poppe E (1957) Experimental investigations on cataract formation following whole-body roentgen irradiation. Acta Radiol 47:138–148CrossRefPubMed
3.
Zurück zum Zitat Stewart FA, Akleyev AV, Hauer-Jensen M et al (2012) ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs–threshold doses for tissue reactions in a radiation protection context. Ann ICRP 41:1–322CrossRefPubMed Stewart FA, Akleyev AV, Hauer-Jensen M et al (2012) ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs–threshold doses for tissue reactions in a radiation protection context. Ann ICRP 41:1–322CrossRefPubMed
4.
Zurück zum Zitat Harbron RW, Ainsbury EA, Barnard SGR et al (2019) Radiation dose to the lens from CT of the head in young people. Clin Radiol 74:816 e819-816 e817CrossRef Harbron RW, Ainsbury EA, Barnard SGR et al (2019) Radiation dose to the lens from CT of the head in young people. Clin Radiol 74:816 e819-816 e817CrossRef
5.
Zurück zum Zitat Yabuuchi H, Kamitani T, Sagiyama K et al (2018) Clinical application of radiation dose reduction for head and neck CT. Eur J Radiol 107:209–215CrossRefPubMed Yabuuchi H, Kamitani T, Sagiyama K et al (2018) Clinical application of radiation dose reduction for head and neck CT. Eur J Radiol 107:209–215CrossRefPubMed
6.
Zurück zum Zitat Spearman JV, Schoepf UJ, Rottenkolber M et al (2016) Effect of automated attenuation-based tube voltage selection on radiation dose at CT: an observational study on a global scale. Radiology 279:167–174CrossRefPubMed Spearman JV, Schoepf UJ, Rottenkolber M et al (2016) Effect of automated attenuation-based tube voltage selection on radiation dose at CT: an observational study on a global scale. Radiology 279:167–174CrossRefPubMed
7.
Zurück zum Zitat Papadakis AE, Damilakis J (2019) Automatic tube current modulation and tube voltage selection in pediatric computed tomography: a phantom study on radiation dose and image quality. Invest Radiol 54:265–272CrossRefPubMed Papadakis AE, Damilakis J (2019) Automatic tube current modulation and tube voltage selection in pediatric computed tomography: a phantom study on radiation dose and image quality. Invest Radiol 54:265–272CrossRefPubMed
8.
Zurück zum Zitat Santos J, Foley S, Paulo G et al (2015) The impact of pediatric-specific dose modulation curves on radiation dose and image quality in head computed tomography. Pediatr Radiol 45:1814–1822CrossRefPubMed Santos J, Foley S, Paulo G et al (2015) The impact of pediatric-specific dose modulation curves on radiation dose and image quality in head computed tomography. Pediatr Radiol 45:1814–1822CrossRefPubMed
9.
Zurück zum Zitat Papadakis AE, Damilakis J (2020) Evaluation of an organ-based tube current modulation tool in pediatric CT examinations. Eur Radiol 30:5728–5737CrossRefPubMedPubMedCentral Papadakis AE, Damilakis J (2020) Evaluation of an organ-based tube current modulation tool in pediatric CT examinations. Eur Radiol 30:5728–5737CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Boos J, Kropil P, Klee D et al (2014) Evaluation of the impact of organ-specific dose reduction on image quality in pediatric chest computed tomography. Pediatr Radiol 44:1065–1069CrossRefPubMed Boos J, Kropil P, Klee D et al (2014) Evaluation of the impact of organ-specific dose reduction on image quality in pediatric chest computed tomography. Pediatr Radiol 44:1065–1069CrossRefPubMed
11.
Zurück zum Zitat Mehnati P, Malekzadeh R, Sooteh MY (2019) Use of bismuth shield for protection of superficial radiosensitive organs in patients undergoing computed tomography: a literature review and meta-analysis. Radiol Phys Technol 12:6–25CrossRefPubMed Mehnati P, Malekzadeh R, Sooteh MY (2019) Use of bismuth shield for protection of superficial radiosensitive organs in patients undergoing computed tomography: a literature review and meta-analysis. Radiol Phys Technol 12:6–25CrossRefPubMed
12.
Zurück zum Zitat Gargett MA, Briggs AR, Booth JT (2020) Water equivalence of a solid phantom material for radiation dosimetry applications. Phys Imaging Radiat Oncol 14:43–47CrossRefPubMedPubMedCentral Gargett MA, Briggs AR, Booth JT (2020) Water equivalence of a solid phantom material for radiation dosimetry applications. Phys Imaging Radiat Oncol 14:43–47CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Chodick G, Bekiroglu N, Hauptmann M et al (2008) Risk of cataract after exposure to low doses of ionizing radiation: a 20-year prospective cohort study among US radiologic technologists. Am J Epidemiol 168:620–631CrossRefPubMedPubMedCentral Chodick G, Bekiroglu N, Hauptmann M et al (2008) Risk of cataract after exposure to low doses of ionizing radiation: a 20-year prospective cohort study among US radiologic technologists. Am J Epidemiol 168:620–631CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Worgul BV, Kundiyev YI, Sergiyenko NM et al (2007) Cataracts among Chernobyl clean-up workers: implications regarding permissible eye exposures. Radiat Res 167:233–243CrossRefPubMed Worgul BV, Kundiyev YI, Sergiyenko NM et al (2007) Cataracts among Chernobyl clean-up workers: implications regarding permissible eye exposures. Radiat Res 167:233–243CrossRefPubMed
15.
Zurück zum Zitat Tack D, De Maertelaer V, Gevenois PA (2003) Dose reduction in multidetector CT using attenuation-based online tube current modulation. AJR Am J Roentgenol 181:331–334CrossRefPubMed Tack D, De Maertelaer V, Gevenois PA (2003) Dose reduction in multidetector CT using attenuation-based online tube current modulation. AJR Am J Roentgenol 181:331–334CrossRefPubMed
16.
Zurück zum Zitat Kalra MK, Rizzo S, Maher MM et al (2005) Chest CT performed with z-axis modulation: scanning protocol and radiation dose. Radiology 237:303–308CrossRefPubMed Kalra MK, Rizzo S, Maher MM et al (2005) Chest CT performed with z-axis modulation: scanning protocol and radiation dose. Radiology 237:303–308CrossRefPubMed
17.
Zurück zum Zitat McCollough CH, Bruesewitz MR, Kofler JM Jr (2006) CT dose reduction and dose management tools: overview of available options. Radiographics 26:503–512CrossRefPubMed McCollough CH, Bruesewitz MR, Kofler JM Jr (2006) CT dose reduction and dose management tools: overview of available options. Radiographics 26:503–512CrossRefPubMed
18.
Zurück zum Zitat Lee CH, Goo JM, Ye HJ et al (2008) Radiation dose modulation techniques in the multidetector CT era: from basics to practice. Radiographics 28:1451–1459CrossRefPubMed Lee CH, Goo JM, Ye HJ et al (2008) Radiation dose modulation techniques in the multidetector CT era: from basics to practice. Radiographics 28:1451–1459CrossRefPubMed
19.
Zurück zum Zitat Hoang JK, Yoshizumi TT, Choudhury KR et al (2012) Organ-based dose current modulation and thyroid shields: techniques of radiation dose reduction for neck CT. AJR Am J Roentgenol 198:1132–1138CrossRefPubMed Hoang JK, Yoshizumi TT, Choudhury KR et al (2012) Organ-based dose current modulation and thyroid shields: techniques of radiation dose reduction for neck CT. AJR Am J Roentgenol 198:1132–1138CrossRefPubMed
20.
Zurück zum Zitat Franck C, Smeets P, Lapeire L et al (2018) Estimating the patient-specific dose to the thyroid and breasts and overall risk in chest CT when using organ-based tube current modulation. Radiology 288:164–169CrossRefPubMed Franck C, Smeets P, Lapeire L et al (2018) Estimating the patient-specific dose to the thyroid and breasts and overall risk in chest CT when using organ-based tube current modulation. Radiology 288:164–169CrossRefPubMed
21.
Zurück zum Zitat Euler A, Szucs-Farkas Z, Falkowski AL et al (2016) Organ-based tube current modulation in a clinical context: Dose reduction may be largely overestimated in breast tissue. Eur Radiol 26:2656–2662CrossRefPubMed Euler A, Szucs-Farkas Z, Falkowski AL et al (2016) Organ-based tube current modulation in a clinical context: Dose reduction may be largely overestimated in breast tissue. Eur Radiol 26:2656–2662CrossRefPubMed
22.
Zurück zum Zitat Duan X, Wang J, Christner JA et al (2011) Dose reduction to anterior surfaces with organ-based tube-current modulation: evaluation of performance in a phantom study. AJR Am J Roentgenol 197:689–695CrossRefPubMed Duan X, Wang J, Christner JA et al (2011) Dose reduction to anterior surfaces with organ-based tube-current modulation: evaluation of performance in a phantom study. AJR Am J Roentgenol 197:689–695CrossRefPubMed
23.
Zurück zum Zitat Wang J, Duan X, Christner JA et al (2012) Bismuth shielding, organ-based tube current modulation, and global reduction of tube current for dose reduction to the eye at head CT. Radiology 262:191–198CrossRefPubMed Wang J, Duan X, Christner JA et al (2012) Bismuth shielding, organ-based tube current modulation, and global reduction of tube current for dose reduction to the eye at head CT. Radiology 262:191–198CrossRefPubMed
24.
Zurück zum Zitat Lungren MP, Yoshizumi TT, Brady SM et al (2012) Radiation dose estimations to the thorax using organ-based dose modulation. AJR Am J Roentgenol 199:W65-73CrossRefPubMed Lungren MP, Yoshizumi TT, Brady SM et al (2012) Radiation dose estimations to the thorax using organ-based dose modulation. AJR Am J Roentgenol 199:W65-73CrossRefPubMed
25.
Zurück zum Zitat Yamauchi-Kawaura C, Yamauchi M, Imai K et al (2013) Image quality and age-specific dose estimation in head and chest CT examinations with organ-based tube-current modulation. Radiat Prot Dosimetry 157:193–205CrossRefPubMed Yamauchi-Kawaura C, Yamauchi M, Imai K et al (2013) Image quality and age-specific dose estimation in head and chest CT examinations with organ-based tube-current modulation. Radiat Prot Dosimetry 157:193–205CrossRefPubMed
26.
Zurück zum Zitat Lee KH, Lee JM, Moon SK et al (2012) Attenuation-based automatic tube voltage selection and tube current modulation for dose reduction at contrast-enhanced liver CT. Radiology 265:437–447CrossRefPubMed Lee KH, Lee JM, Moon SK et al (2012) Attenuation-based automatic tube voltage selection and tube current modulation for dose reduction at contrast-enhanced liver CT. Radiology 265:437–447CrossRefPubMed
27.
Zurück zum Zitat Hopper KD, King SH, Lobell ME et al (1997) The breast: in-plane x-ray protection during diagnostic thoracic CT–shielding with bismuth radioprotective garments. Radiology 205:853–858CrossRefPubMed Hopper KD, King SH, Lobell ME et al (1997) The breast: in-plane x-ray protection during diagnostic thoracic CT–shielding with bismuth radioprotective garments. Radiology 205:853–858CrossRefPubMed
28.
Zurück zum Zitat Hopper KD (2002) Orbital, thyroid, and breast superficial radiation shielding for patients undergoing diagnostic CT. Semin Ultrasound CT MR 23:423–427CrossRefPubMed Hopper KD (2002) Orbital, thyroid, and breast superficial radiation shielding for patients undergoing diagnostic CT. Semin Ultrasound CT MR 23:423–427CrossRefPubMed
29.
Zurück zum Zitat Sadigh G, Kadom N, Karthik P et al (2018) Noncontrast head CT in children: national variation in radiation dose indices in the United States. AJNR Am J Neuroradiol 39:1400–1405 Sadigh G, Kadom N, Karthik P et al (2018) Noncontrast head CT in children: national variation in radiation dose indices in the United States. AJNR Am J Neuroradiol 39:1400–1405
30.
Zurück zum Zitat Colletti PM, Micheli OA, Lee KH (2013) To shield or not to shield: application of bismuth breast shields. AJR Am J Roentgenol 200:503–507CrossRefPubMed Colletti PM, Micheli OA, Lee KH (2013) To shield or not to shield: application of bismuth breast shields. AJR Am J Roentgenol 200:503–507CrossRefPubMed
Metadaten
Titel
Organ-based tube current modulation and bismuth eye shielding in pediatric head computed tomography
verfasst von
Stefan Markart
Tim S. Fischer
Simon Wildermuth
Tobias J. Dietrich
Hatem Alkadhi
Sebastian Leschka
Sabine Guesewell
Michael R. Ditchfield
Ismail Oezden
Gerd Lutters
Stephan L. Waelti
Publikationsdatum
15.07.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Radiology / Ausgabe 13/2022
Print ISSN: 0301-0449
Elektronische ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-022-05410-x

Weitere Artikel der Ausgabe 13/2022

Pediatric Radiology 13/2022 Zur Ausgabe

Minisymposium: Pediatric cardiovascular CT

Computed tomography for aortic assessment in children

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.