Skip to main content
Erschienen in: Cardiovascular Toxicology 12/2022

07.11.2022

PCSK9 Knockdown Can Improve Myocardial Ischemia/Reperfusion Injury by Inhibiting Autophagy

verfasst von: Guangwei Huang, Xiyang Lu, Zonggang Duan, Kai Zhang, Lei Xu, Hailong Bao, Xinlin Xiong, Muzhi Lin, Chao Li, Yunquan Li, Haiyan Zhou, Zhenhua Luo, Wei Li

Erschienen in: Cardiovascular Toxicology | Ausgabe 12/2022

Einloggen, um Zugang zu erhalten

Abstract

This study investigates the effect and mechanism of proprotein convertase subtilisin/Kexin type 9 (PCSK9) on myocardial ischemia–reperfusion injury (MIRI) and provides a reference for clinical prevention and treatment of acute myocardial infarction (AMI). We established a rat model of myocardial ischemia/reperfusion (I/R) and AC16 hypoxia/reoxygenation (H/R) model. A total of 48 adult 7-week-old male Sprague–Dawley rats were randomly assigned to three groups (n = 16): control, I/R, and I/R + SiRNA. In I/R and I/R + siRNA groups, myocardial ischemia was induced via occlusion of the left anterior descending branch (LAD) of the coronary artery in rats in I/R group for 30 min and reperfused for 3 days. To assess the myocardial injury, the rats were subjected to an electrocardiogram (ECG), cardiac function tests, cardiac enzymes analysis, and 2,3,5-triphenyl tetrazolium chloride (TTC)/Evan Blue (EB) staining. Meanwhile, differences in the expression of autophagy-level proteins and Bcl-2/adenovirus E1B 19-kDa interacting protein (Bnip3) signaling-related proteins were determined by protein blotting. In vitro and in vivo experimental studies revealed that siRNA knockdown of PCSK9 reduced the expression of autophagic protein Beclin-1, light chain 3 (LC3) compared to normal control-treated cells and control-operated groups. Simultaneously, the expression of Bnip3 pathway protein was downregulated. Furthermore, the PCSK9-mediated small interfering RNA (siRNA) group injected into the left ventricular wall significantly improved cardiac function and myocardial infarct size. In ischemic/hypoxic circumstances, PCSK9 expression was dramatically increased. PCSK9 knockdown alleviated MIRI via Bnip3-mediated autophagic pathway, inhibited inflammatory response, reduced myocardial infarct size, and protected cardiac function.
Literatur
1.
Zurück zum Zitat Kuhn, T. C., Knobel, J., Burkert-Rettenmaier, S., et al. (2020). Secretome analysis of cardiomyocytes identifies PCSK6 (proprotein convertase subtilisin/kexin type 6) as a novel player in cardiac remodeling after myocardial infarction. Circulation, 141(20), 1628–1644.CrossRefPubMed Kuhn, T. C., Knobel, J., Burkert-Rettenmaier, S., et al. (2020). Secretome analysis of cardiomyocytes identifies PCSK6 (proprotein convertase subtilisin/kexin type 6) as a novel player in cardiac remodeling after myocardial infarction. Circulation, 141(20), 1628–1644.CrossRefPubMed
2.
Zurück zum Zitat Huang, Z.-Q., Xu, W., Wu, J.-L., et al. (2019). MicroRNA-374a protects against myocardial ischemia–reperfusion injury in mice by targeting the MAPK6 pathway. Life Sciences, 232, 116619.CrossRefPubMed Huang, Z.-Q., Xu, W., Wu, J.-L., et al. (2019). MicroRNA-374a protects against myocardial ischemia–reperfusion injury in mice by targeting the MAPK6 pathway. Life Sciences, 232, 116619.CrossRefPubMed
3.
Zurück zum Zitat Liu, W., Chen, C., Gu, X., et al. (2021). AM1241 alleviates myocardial ischemia–reperfusion injury in rats by enhancing Pink1/Parkin-mediated autophagy. Life Sciences, 272, 119228.CrossRefPubMed Liu, W., Chen, C., Gu, X., et al. (2021). AM1241 alleviates myocardial ischemia–reperfusion injury in rats by enhancing Pink1/Parkin-mediated autophagy. Life Sciences, 272, 119228.CrossRefPubMed
4.
Zurück zum Zitat Elgebaly, S. A., Poston, R., Todd, R., et al. (2019). Cyclocreatine protects against ischemic injury and enhances cardiac recovery during early reperfusion. Expert Review of Cardiovascular Therapy, 17(9), 683–697.CrossRefPubMed Elgebaly, S. A., Poston, R., Todd, R., et al. (2019). Cyclocreatine protects against ischemic injury and enhances cardiac recovery during early reperfusion. Expert Review of Cardiovascular Therapy, 17(9), 683–697.CrossRefPubMed
5.
Zurück zum Zitat Sulaiman, D., Li, J., Devarajan, A., et al. (2019). Paraoxonase 2 protects against acute myocardial ischemia–reperfusion injury by modulating mitochondrial function and oxidative stress via the PI3K/Akt/GSK-3β RISK pathway. Journal of Molecular and Cellular Cardiology, 129, 154–64.CrossRefPubMed Sulaiman, D., Li, J., Devarajan, A., et al. (2019). Paraoxonase 2 protects against acute myocardial ischemia–reperfusion injury by modulating mitochondrial function and oxidative stress via the PI3K/Akt/GSK-3β RISK pathway. Journal of Molecular and Cellular Cardiology, 129, 154–64.CrossRefPubMed
6.
Zurück zum Zitat Zheng, Y., Shi, B., Ma, M., et al. (2019). The novel relationship between Sirt3 and autophagy in myocardial ischemia–reperfusion. Journal of Cellular Physiology, 234(5), 5488–5495.CrossRefPubMed Zheng, Y., Shi, B., Ma, M., et al. (2019). The novel relationship between Sirt3 and autophagy in myocardial ischemia–reperfusion. Journal of Cellular Physiology, 234(5), 5488–5495.CrossRefPubMed
7.
Zurück zum Zitat Abate, N., Sallam, H. S., Rizzo, M., et al. (2014). Resistin: An inflammatory cytokine. Role in cardiovascular diseases, diabetes and the metabolic syndrome. Current Pharmaceutical Design, 20(31), 4961–9.CrossRefPubMed Abate, N., Sallam, H. S., Rizzo, M., et al. (2014). Resistin: An inflammatory cytokine. Role in cardiovascular diseases, diabetes and the metabolic syndrome. Current Pharmaceutical Design, 20(31), 4961–9.CrossRefPubMed
8.
Zurück zum Zitat Horton, J. D., Cohen, J. C., & Hobbs, H. H. (2007). Molecular biology of PCSK9: Its role in LDL metabolism. Trends in Biochemical Sciences, 32(2), 71–77.CrossRefPubMedPubMedCentral Horton, J. D., Cohen, J. C., & Hobbs, H. H. (2007). Molecular biology of PCSK9: Its role in LDL metabolism. Trends in Biochemical Sciences, 32(2), 71–77.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Gu, H.-M., & Zhang, D.-W. (2015). Hypercholesterolemia, low density lipoprotein receptor and proprotein convertase subtilisin/kexin-type 9. Journal of Biomedical Research, 29(5), 356–361.PubMedPubMedCentral Gu, H.-M., & Zhang, D.-W. (2015). Hypercholesterolemia, low density lipoprotein receptor and proprotein convertase subtilisin/kexin-type 9. Journal of Biomedical Research, 29(5), 356–361.PubMedPubMedCentral
10.
Zurück zum Zitat Poncelas, M., Inserte, J., Vilardosa, Ú., et al. (2015). Obesity induced by high fat diet attenuates postinfarct myocardial remodeling and dysfunction in adult B6D2F1 mice. Journal of Molecular and Cellular Cardiology, 84, 154–61.CrossRefPubMed Poncelas, M., Inserte, J., Vilardosa, Ú., et al. (2015). Obesity induced by high fat diet attenuates postinfarct myocardial remodeling and dysfunction in adult B6D2F1 mice. Journal of Molecular and Cellular Cardiology, 84, 154–61.CrossRefPubMed
11.
Zurück zum Zitat Inserte, J., Aluja, D., Barba, I., et al. (2019). High-fat diet improves tolerance to myocardial ischemia by delaying normalization of intracellular PH at reperfusion. Journal of Molecular and Cellular Cardiology, 133, 164–73.CrossRefPubMed Inserte, J., Aluja, D., Barba, I., et al. (2019). High-fat diet improves tolerance to myocardial ischemia by delaying normalization of intracellular PH at reperfusion. Journal of Molecular and Cellular Cardiology, 133, 164–73.CrossRefPubMed
12.
Zurück zum Zitat Andreadou, I., Schulz, R., Badimon, L., et al. (2020). Hyperlipidaemia and cardioprotection: Animal models for translational studies. British Journal of Pharmacology, 177(23), 5287–5311.CrossRefPubMedPubMedCentral Andreadou, I., Schulz, R., Badimon, L., et al. (2020). Hyperlipidaemia and cardioprotection: Animal models for translational studies. British Journal of Pharmacology, 177(23), 5287–5311.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Ding, Z., Wang, X., Liu, S., et al. (2018). PCSK9 expression in the ischaemic heart and its relationship to infarct size, cardiac function, and development of autophagy. Cardiovascular Research, 114(13), 1738–1751.CrossRefPubMed Ding, Z., Wang, X., Liu, S., et al. (2018). PCSK9 expression in the ischaemic heart and its relationship to infarct size, cardiac function, and development of autophagy. Cardiovascular Research, 114(13), 1738–1751.CrossRefPubMed
14.
Zurück zum Zitat Momtazi-Borojeni, A. A., Sabouri-Rad, S., Gotto, A. M., et al. (2019). PCSK9 and inflammation: A review of experimental and clinical evidence. European Heart Journal Cardiovascular Pharmacotherapy, 5(4), 237–245.CrossRefPubMed Momtazi-Borojeni, A. A., Sabouri-Rad, S., Gotto, A. M., et al. (2019). PCSK9 and inflammation: A review of experimental and clinical evidence. European Heart Journal Cardiovascular Pharmacotherapy, 5(4), 237–245.CrossRefPubMed
15.
Zurück zum Zitat Palee, S., Mcsweeney, C. M., Maneechote, C., et al. (2019). PCSK9 inhibitor improves cardiac function and reduces infarct size in rats with ischaemia/reperfusion injury: Benefits beyond lipid-lowering effects. Journal of Cellular and Molecular Medicine, 23(11), 7310–7319.CrossRefPubMedPubMedCentral Palee, S., Mcsweeney, C. M., Maneechote, C., et al. (2019). PCSK9 inhibitor improves cardiac function and reduces infarct size in rats with ischaemia/reperfusion injury: Benefits beyond lipid-lowering effects. Journal of Cellular and Molecular Medicine, 23(11), 7310–7319.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Wiviott, S. D., Giugliano, R. P., Morrow, D. A., et al. (2020). Effect of evolocumab on type and size of subsequent myocardial infarction: A prespecified analysis of the FOURIER randomized clinical trial. JAMA Cardiology, 5(7), 787–793.CrossRefPubMedPubMedCentral Wiviott, S. D., Giugliano, R. P., Morrow, D. A., et al. (2020). Effect of evolocumab on type and size of subsequent myocardial infarction: A prespecified analysis of the FOURIER randomized clinical trial. JAMA Cardiology, 5(7), 787–793.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Schwartz, G. G., Steg, P. G., Szarek, M., et al. (2018). Alirocumab and cardiovascular outcomes after acute coronary syndrome. The New England Journal of Medicine, 379(22), 2097–2107.CrossRefPubMed Schwartz, G. G., Steg, P. G., Szarek, M., et al. (2018). Alirocumab and cardiovascular outcomes after acute coronary syndrome. The New England Journal of Medicine, 379(22), 2097–2107.CrossRefPubMed
18.
Zurück zum Zitat Shankar, P., Manjunath, N., & Lieberman, J. (2005). The prospect of silencing disease using RNA interference. JAMA, 293(11), 1367–1373.CrossRefPubMed Shankar, P., Manjunath, N., & Lieberman, J. (2005). The prospect of silencing disease using RNA interference. JAMA, 293(11), 1367–1373.CrossRefPubMed
19.
Zurück zum Zitat Zhou, H., Mo, L., Huang, N., et al. (2022). 3-Iodothyronamine inhibits apoptosis induced by myocardial ischemia reperfusion via the Akt/FoxO1 signaling pathway. Annals of Translational Medicine, 10(4), 168.CrossRefPubMedPubMedCentral Zhou, H., Mo, L., Huang, N., et al. (2022). 3-Iodothyronamine inhibits apoptosis induced by myocardial ischemia reperfusion via the Akt/FoxO1 signaling pathway. Annals of Translational Medicine, 10(4), 168.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Rossello, X., Hall, A. R., Bell, R. M., et al. (2016). Characterization of the Langendorff perfused isolated mouse heart model of global ischemia–reperfusion injury: Impact of ischemia and reperfusion length on infarct size and LDH release. Journal of Cardiovascular Pharmacology and Therapeutics, 21(3), 286–295.CrossRefPubMed Rossello, X., Hall, A. R., Bell, R. M., et al. (2016). Characterization of the Langendorff perfused isolated mouse heart model of global ischemia–reperfusion injury: Impact of ischemia and reperfusion length on infarct size and LDH release. Journal of Cardiovascular Pharmacology and Therapeutics, 21(3), 286–295.CrossRefPubMed
21.
Zurück zum Zitat Crucet, M., Wüst, S. J. A., Spielmann, P., et al. (2013). Hypoxia enhances lipid uptake in macrophages: Role of the scavenger receptors Lox1, SRA, and CD36. Atherosclerosis, 229(1), 110–117.CrossRefPubMed Crucet, M., Wüst, S. J. A., Spielmann, P., et al. (2013). Hypoxia enhances lipid uptake in macrophages: Role of the scavenger receptors Lox1, SRA, and CD36. Atherosclerosis, 229(1), 110–117.CrossRefPubMed
22.
Zurück zum Zitat Ning, K., Jiang, L., Hu, T., et al. (2020). ATP-sensitive potassium channels mediate the cardioprotective effect of panax notoginseng saponins against myocardial ischaemia–reperfusion injury and inflammatory reaction. BioMed Research International, 2020, 3039184.CrossRefPubMedPubMedCentral Ning, K., Jiang, L., Hu, T., et al. (2020). ATP-sensitive potassium channels mediate the cardioprotective effect of panax notoginseng saponins against myocardial ischaemia–reperfusion injury and inflammatory reaction. BioMed Research International, 2020, 3039184.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Li, L., Li, X., Zhang, Z., et al. (2020). Protective mechanism and clinical application of hydrogen in myocardial ischemia–reperfusion injury. Pakistan Journal of Biological Sciences, 23(2), 103–112.CrossRefPubMed Li, L., Li, X., Zhang, Z., et al. (2020). Protective mechanism and clinical application of hydrogen in myocardial ischemia–reperfusion injury. Pakistan Journal of Biological Sciences, 23(2), 103–112.CrossRefPubMed
24.
Zurück zum Zitat Wang, J., Toan, S., & Zhou, H. (2020). New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis, 23(3), 299–314.CrossRefPubMed Wang, J., Toan, S., & Zhou, H. (2020). New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis, 23(3), 299–314.CrossRefPubMed
25.
Zurück zum Zitat Liu, L., Jin, X., Hu, C.-F., et al. (2017). Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 43(1), 52–68.CrossRef Liu, L., Jin, X., Hu, C.-F., et al. (2017). Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 43(1), 52–68.CrossRef
26.
Zurück zum Zitat Yu, S.-Y., Dong, B., Fang, Z.-F., et al. (2018). Knockdown of lncRNA AK139328 alleviates myocardial ischaemia/reperfusion injury in diabetic mice via modulating miR-204-3p and inhibiting autophagy. Journal of Cellular and Molecular Medicine, 22(10), 4886–4898.CrossRefPubMedPubMedCentral Yu, S.-Y., Dong, B., Fang, Z.-F., et al. (2018). Knockdown of lncRNA AK139328 alleviates myocardial ischaemia/reperfusion injury in diabetic mice via modulating miR-204-3p and inhibiting autophagy. Journal of Cellular and Molecular Medicine, 22(10), 4886–4898.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Yu, W., Xu, M., Zhang, T., et al. (2019). Mst1 promotes cardiac ischemia–reperfusion injury by inhibiting the ERK-CREB pathway and repressing FUNDC1-mediated mitophagy. The Journal of Physiological Sciences, 69(1), 113–127.CrossRefPubMed Yu, W., Xu, M., Zhang, T., et al. (2019). Mst1 promotes cardiac ischemia–reperfusion injury by inhibiting the ERK-CREB pathway and repressing FUNDC1-mediated mitophagy. The Journal of Physiological Sciences, 69(1), 113–127.CrossRefPubMed
28.
Zurück zum Zitat Xue, Z., Zhang, Z., Liu, H., et al. (2019). lincRNA-Cox2 regulates NLRP3 inflammasome and autophagy mediated neuroinflammation. Cell Death and Differentiation, 26(1), 130–145.CrossRefPubMed Xue, Z., Zhang, Z., Liu, H., et al. (2019). lincRNA-Cox2 regulates NLRP3 inflammasome and autophagy mediated neuroinflammation. Cell Death and Differentiation, 26(1), 130–145.CrossRefPubMed
29.
Zurück zum Zitat Wang, F., Wang, H., Liu, X., et al. (2021). Neuregulin-1 alleviate oxidative stress and mitigate inflammation by suppressing NOX4 and NLRP3/caspase-1 in myocardial ischaemia–reperfusion injury. Journal of Cellular and Molecular Medicine, 25(3), 1783–1795.CrossRefPubMedPubMedCentral Wang, F., Wang, H., Liu, X., et al. (2021). Neuregulin-1 alleviate oxidative stress and mitigate inflammation by suppressing NOX4 and NLRP3/caspase-1 in myocardial ischaemia–reperfusion injury. Journal of Cellular and Molecular Medicine, 25(3), 1783–1795.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Cyr, Y., Lamantia, V., Bissonnette, S., et al. (2021). Lower plasma PCSK9 in normocholesterolemic subjects is associated with upregulated adipose tissue surface-expression of LDLR and CD36 and NLRP3 inflammasome. Physiological Reports, 9(3), e14721.CrossRefPubMedPubMedCentral Cyr, Y., Lamantia, V., Bissonnette, S., et al. (2021). Lower plasma PCSK9 in normocholesterolemic subjects is associated with upregulated adipose tissue surface-expression of LDLR and CD36 and NLRP3 inflammasome. Physiological Reports, 9(3), e14721.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Li, D., Williams, V., Liu, L., et al. (2003). Expression of lectin-like oxidized low-density lipoprotein receptors during ischemia–reperfusion and its role in determination of apoptosis and left ventricular dysfunction. Journal of the American College of Cardiology, 41(6), 1048–1055.CrossRefPubMed Li, D., Williams, V., Liu, L., et al. (2003). Expression of lectin-like oxidized low-density lipoprotein receptors during ischemia–reperfusion and its role in determination of apoptosis and left ventricular dysfunction. Journal of the American College of Cardiology, 41(6), 1048–1055.CrossRefPubMed
32.
Zurück zum Zitat Cohen, J. C., Boerwinkle, E., Mosley, T. H., et al. (2006). Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. The New England Journal of Medicine, 354(12), 1264–1272.CrossRefPubMed Cohen, J. C., Boerwinkle, E., Mosley, T. H., et al. (2006). Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. The New England Journal of Medicine, 354(12), 1264–1272.CrossRefPubMed
Metadaten
Titel
PCSK9 Knockdown Can Improve Myocardial Ischemia/Reperfusion Injury by Inhibiting Autophagy
verfasst von
Guangwei Huang
Xiyang Lu
Zonggang Duan
Kai Zhang
Lei Xu
Hailong Bao
Xinlin Xiong
Muzhi Lin
Chao Li
Yunquan Li
Haiyan Zhou
Zhenhua Luo
Wei Li
Publikationsdatum
07.11.2022
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 12/2022
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-022-09771-5