Skip to main content
Erschienen in: Journal of Medical Case Reports 1/2021

Open Access 01.12.2021 | Case report

Plurihormonal pituitary macroadenoma:  a case report

verfasst von: Ebtesam Allehaibi, Mussa H. AlMalki, Imad Brema

Erschienen in: Journal of Medical Case Reports | Ausgabe 1/2021

Abstract

Background

Plurihormonal pituitary adenomas are a unique type of pituitary adenomas that secrete two or more pituitary hormones normally associated with separate cell types that have different immunocytochemical and ultrastructural features. Although they represent 10–15% of all pituitary tumors, only a small fraction of plurihormonal pituitary adenomas clinically secrete multiple hormones. The most common hormone combinations secreted by plurihormonal pituitary adenomas are growth hormone, prolactin, and one or more glycoprotein hormones. The most common hormonal symptom is acromegaly (50%). The aim of this case report is to bring awareness about this rare type of pituitary adenomas and to describe the unique presentation of our patient, even though plurihormonal pituitary adenomas are known mostly as a clinically silent tumors.

Case presentation

Herein, we describe an unusual case of plurihormonal pituitary adenoma with triple-positive staining for adrenocorticotropic hormone, growth hormone, and prolactin. The patient is a 65-year-old Egyptian woman who presented with mass effect symptoms of the pituitary tumor, which primarily manifested as severe headache and visual field defects. She also presented with some cushingoid features, and further analysis confirmed Cushing’s disease; slightly high prolactin and normal growth hormone levels were observed. She underwent transsphenoidal surgery and has been in remission thus far. Only a few cases have been reported in the literature, but none has exhibited silent acromegaly or mass effect symptoms as the initial presentation.

Conclusion

This case highlights an unusual plurihormonal pituitary adenoma case with a rare combination of secreted hormones; mass effect symptoms were dominant, as were uncommon visual field defects. Our case further proves that immunohistochemical analyses of all pituitary hormones are needed to ensure correct diagnosis and to alert clinicians to the need for more rigorous follow-up due to the higher morbidity of these patients. Our case report approval number Federal Wide Assurance NIH, USA is FWA00018774 IRB registration number with OHRP/NIH is IRB00010471.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
GH
Growth hormone
PRL
Prolactin
ACTH
Adrenocorticotropic hormone
PTHs
Plurihormonal pituitary adenomas
FSH
Follicle-stimulating hormone
TSS
Transsphenoidal surgery

Background

Plurihormonal pituitary adenomas (PHAs) are a unique type of pituitary adenoma that are further divided into two main groups: monomorphous adenoma of one cell type producing different hormones or bi- or plurimorphous adenoma of two or more cell types producing different hormones [1]. They represent 10–15% of all pituitary tumors, but only a small number clinically secretes multiple hormones. PHAs could be either functioning tumors, having symptoms related to one or more hormones secreted by the adenomas, or nonfunctioning tumors [24].
The most common hormone combinations secreted by PHAs are growth hormone (GH), prolactin (PRL), and one or more glycoprotein hormones. The most common hormonal symptom is acromegaly (50%), followed by subclinical Cushing’s disease, then symptoms related to hyperprolactinemia [5].
Careful follow-up of patients with PHA is essential owing to the high risk of tumor recurrence as compared with tumors that secrete only one hormone [1, 6]. This report describes an unusual case of pituitary adenoma presenting with features of Cushing’s disease, and the resected tumor revealed triple hormonal staining for ACTH, GH, and prolactin.

Case presentation

A 65-year-old Egyptian woman with a history of type 2 diabetes, hypertension, primary hypothyroidism, and class-III obesity presented acutely to the emergency room (ER) with an intractable headache and blurred vision. She had also recently experienced a worsening of her diabetes control despite being on a basal-bolus insulin regimen. She had no clear-cut cushingoid features apart from central obesity, and she had no family history of pituitary tumors or similar illness. She is a stay-at-home mother to four. Children are all a product of uneventful pregnancies and were delivered normally. She is married for 20 years to a physician. She never smoked or drank alcohol.
Computed tomography (CT) brain imaging and subsequent magnetic resonance imaging (MRI) showed a sellar mass consisting of a pituitary macroadenoma that measured 2.9 × 1.5 cm invading the roof of the sphenoid sinuses and compressing the neurophysis and the optic chiasm (Fig. 1). She has central obesity but did not appear cushingoid or acromegalic. Visual field examination revealed left homonymous hemianopia and right homonymous inferior quadrantanopia (Fig. 2A). Initial laboratory investigations revealed elevated corticotropin (ACTH) levels of 33.6 (1.03–10.7) pmol/L, mildly increased prolactin levels of 66.3 (5.18–26.53) ng/ml , normal IGF-1 levels of 17.29 (4.68–31.72) nmol/L, and normal GH levels of 0.72 (0.18–20.6) mIU/L. The remaining anterior pituitary hormone levels were as follows: FSH was 12.50 (4.5–21.5) IU/L, LH was 3.5 (9–19) pmol/L, TSH was 1.441 (2.6–5.7) mIU/L, and free T4 was 13.1 IU/L (9–23). Further investigations confirmed Cushing’s disease as follows: 24-hour urinary free cortisol was grossly elevated at 391 µg/24 hours (6–123), serum cortisol after the 1 mg dexamethasone suppression test was 783 nmol/l (normal < 50 nmol/l). Serum cortisol after the high-dose dexamethasone suppression test was 613 nmol/l (20% reduction from baseline). She underwent uneventful transsphenoidal surgery (TSS) for decompression of the optic chiasm, which was successful at normalizing her visual fields; however, residual tumor was still present on follow-up MRI after 3 months (Fig. 3). Interestingly, histology of the resected tissue showed staining for ACTH (Fig. 4), GH (Fig. 5), and PRL (Fig. 6), with a Ki-67 proliferation index of less than 2%. Postoperatively, she experienced symptom resolution with normalization of the visual fields (Fig. 2B). A follow-up evaluation 12 months postoperatively showed a normal response to the 1 mg dexamethasone suppression test; her cortisol levels were < 27.6 nmol/L, and 24-hour urinary free cortisol was also normal at 177 µg/24 hours (21–292). MRI (Fig. 7) pituitary performed 17 months postoperatively showed redemonstration of the residual enhancing lesion seen in the suprasellar region closely related to the pituitary stalk, which remained stable in size, measuring 12.5 × 11.5 mm. Her diabetes mellitus and hypertension also became controlled on fewer medications with ability to discontinue insulin therapy. She remained asymptomatic with no biochemical evidence of recurrence 17 months postoperatively, and there was no need for any treatment utilization.

Discussion

The majority of plurihormonal pituitary adenomas produce GH, PRL, and TSH because somatotroph, lactotroph, and thyrotroph cells all arise from the same progenitor [7]. The expression of pituitary hormones is regulated by several transcription factors: PIT-1 regulates the functional differentiation of GH, PRL, and TSH; STF-1 and GATA-2 regulate the expression of FSH and LH, while ACTH expression is controlled by T-PIT [7, 8], which might explain the higher association with GH and PRL cosecretion. PHAs constitute a significant proportion of pituitary adenomas, with a prevalence of approximately 31–36% of surgically resected tumors [9, 10]. The most frequent associations are with GH and PRL or LH and FSH [11]. GH-producing adenomas with concomitant ACTH production are extremely rare, although they have been reported previously in a few cases [1220]. Clinically, the majority of PHAs are silent, and diagnosis almost always relies on immunohistochemical analysis of the tumor tissue to demonstrate positivity for unrelated hormones [8, 9]. Roca et al. [20] recently reviewed the literature on PHAs and reported 21 cases with ACTH–GH plurihormonal pituitary adenoma. Of these, 2 cases had Cushing’s disease, 5 had both acromegaly and Cushing’s disease, 11 had signs of acromegaly, and 3 had pituitary apoplexy. Interestingly, they found that six cases had PRL secretion in addition to ACTH and GH. In PHAs, symptoms related to ACTH are uncommon and were observed in only 3.6% of the reported cases; this phenomenon may be due to insufficient autonomous ACTH production or the absence of ACTH production [2123]. The pathogenesis of plurimorphous plurihormonal tumors is less clearly defined, but it has been suggested that it may result from neoplastic transformation of two separate cell lines or from the transdifferentiation of one single tumor cell line into a different hormone-producing cell line [8].
In the current study, we present an interesting and rare case of PHA in which the patient had ACTH-producing tumors that clinically manifested as Cushing’s disease and showed GH and PRL positivity by immunohistochemistry, both of which were asymptomatic or silent. In contrast to previously published cases where there was a predominant clinical presentation with acromegaly and symptoms of hyperprolactinemia, our patient presented initially with headaches and visual symptoms, as well as with clinical features of Cushing’s syndrome in the form of uncontrolled blood pressure, diabetes, obesity, and moon face. Postoperative pituitary MRI scans showed a successful reduction in tumor size with some residual tumor remaining in the sella, leading to the resolution of the biochemical and clinical features of cortisol excess. These rare and unusual PHAs tend to be aggressive and associated with a poor outcome [15]. PHA patients with ACTH cosecretion appear to have a higher rate of tumor recurrence. Careful evaluation of patients with such tumors and strict follow-up regimens are needed owing to the higher morbidity of these patients [15, 24, 25]. Our case adds a significant body of knowledge to the current literature of such rare tumors. However, further studies are needed to elucidate the features and natural history of these PHAs.

Conclusion

This case highlights an unusual PHA case of a rare pituitary adenoma with cosecretion of ACTH, GH, and PRL. Mass effect symptoms were dominant, along with some cushingoid features. Although PHAs are usually clinically silent tumors, they are not uncommon pituitary adenomas, and immunohistochemical staining for all pituitary hormones is needed to ensure the correct diagnosis and to alert the clinicians to the need for more rigorous follow-up due to the higher morbidity of these patients. Further work is required to better understand the pathogenesis of this rare condition.

Acknowledgements

This case report was presented as a poster presentation at the American Association of Clinical Endocrinologist Gulf Chapter Conference in Dubai, United Arab Emirates, in November 2018 and at the Endocrine Society Meeting in New Orleans, Louisiana in March 2019.

Declarations

This study was approved by the institutional review board of King Fahad Medical City, RIYADH, Saudi Arabia. Our case report approval number Federal Wide Assurance NIH, USA is FWA00018774 IRB registration number with OHRP/NIH is IRB00010471.
Written informed consent was obtained from the patient for publication of this paper. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Competing interests

The authors have no conflicts of interests
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Allgemeinmedizin

Kombi-Abonnement

Mit e.Med Allgemeinmedizin erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der allgemeinmedizinischen Zeitschriften, inklusive einer gedruckten Allgemeinmedizin-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Kovaks K, Horvath E, Asa SL, Stefaneanu L, Sano T. Pituitary cells producing more than one hormone human pituitary adenomas. Trends Endocrinol Metab. 1989;1:104–7.CrossRef Kovaks K, Horvath E, Asa SL, Stefaneanu L, Sano T. Pituitary cells producing more than one hormone human pituitary adenomas. Trends Endocrinol Metab. 1989;1:104–7.CrossRef
2.
Zurück zum Zitat World Health Organization. Classification of tumours of endocrine organs. 4th ed. Geneva: World Health Organization; 2017. World Health Organization. Classification of tumours of endocrine organs. 4th ed. Geneva: World Health Organization; 2017.
3.
Zurück zum Zitat Mete O, Lopes MB. Overview of the 2017 WHO classification of pituitary tumors. Endocr Pathol. 2017;28:228–43.CrossRef Mete O, Lopes MB. Overview of the 2017 WHO classification of pituitary tumors. Endocr Pathol. 2017;28:228–43.CrossRef
4.
Zurück zum Zitat Inoshita N, Nishioka H. The 2017 WHO classification of pituitary adenoma: overview and comments. Brain Tumor Pathol. 2018;35(2):51–6.CrossRef Inoshita N, Nishioka H. The 2017 WHO classification of pituitary adenoma: overview and comments. Brain Tumor Pathol. 2018;35(2):51–6.CrossRef
5.
Zurück zum Zitat Osamura RY, Kajiya H, Takei M, et al. Pathology of the human pituitary adenomas. Histochem Cell Biol. 2008;130(3):495–507.CrossRef Osamura RY, Kajiya H, Takei M, et al. Pathology of the human pituitary adenomas. Histochem Cell Biol. 2008;130(3):495–507.CrossRef
6.
Zurück zum Zitat Malchiodi E, Profka E, Ferrante E, Sala E, Verrua E, Campi I, Lania AG, Arosio M, Locatelli M, Mortini P, et al. Thyrotropin-secreting pituitary adenomas: outcome of pituitary surgery and irradiation. J Clin Endocrinol Metab. 2014;99:2069–76.CrossRef Malchiodi E, Profka E, Ferrante E, Sala E, Verrua E, Campi I, Lania AG, Arosio M, Locatelli M, Mortini P, et al. Thyrotropin-secreting pituitary adenomas: outcome of pituitary surgery and irradiation. J Clin Endocrinol Metab. 2014;99:2069–76.CrossRef
7.
Zurück zum Zitat Oki K, Yamane K, Oda Y, et al. Combined acromegaly and subclinical Cushing disease related to high-molecular-weight adrenocorticotropic hormone: case report. J Neurosurg. 2009;110(2):369–73.CrossRef Oki K, Yamane K, Oda Y, et al. Combined acromegaly and subclinical Cushing disease related to high-molecular-weight adrenocorticotropic hormone: case report. J Neurosurg. 2009;110(2):369–73.CrossRef
9.
Zurück zum Zitat Tahara S, Kurotani R, Ishii Y, Sanno N, Teramoto A, Osamura RY. A case of Cushing’s disease caused by pituitary adenoma producing adrenocorticotropic hormone and growth hormone concomitantly: aberrant expression of transcription factors NeuroD1 and Pit-1 as a proposed mechanism. Mod Pathol. 2002;15(10):1102–5.CrossRef Tahara S, Kurotani R, Ishii Y, Sanno N, Teramoto A, Osamura RY. A case of Cushing’s disease caused by pituitary adenoma producing adrenocorticotropic hormone and growth hormone concomitantly: aberrant expression of transcription factors NeuroD1 and Pit-1 as a proposed mechanism. Mod Pathol. 2002;15(10):1102–5.CrossRef
10.
Zurück zum Zitat Tsuchiya K, Ohta K, Yoshimoto T, Dai M, Izumiyama H, Hirata Y. A case of acromegaly associated with subclinical Cushing’s disease. Endocr J. 2006;53(5):679–85.CrossRef Tsuchiya K, Ohta K, Yoshimoto T, Dai M, Izumiyama H, Hirata Y. A case of acromegaly associated with subclinical Cushing’s disease. Endocr J. 2006;53(5):679–85.CrossRef
11.
Zurück zum Zitat Roca E, Mattogno PP, Porcelli T, et al. Plurihormonal ACTH–GH pituitary adenoma: case, report and systematic literature review. World Neurosurg. 2018;114:e158–64.CrossRef Roca E, Mattogno PP, Porcelli T, et al. Plurihormonal ACTH–GH pituitary adenoma: case, report and systematic literature review. World Neurosurg. 2018;114:e158–64.CrossRef
13.
Zurück zum Zitat Melmed S. Pathogenesis of pituitary tumors. Nat Rev Endocrinol. 2011;7:257–66.CrossRef Melmed S. Pathogenesis of pituitary tumors. Nat Rev Endocrinol. 2011;7:257–66.CrossRef
14.
Zurück zum Zitat Ho DM, Hsu CY, Ting LT, Chiang H. Plurihormonal pituitary adenomas: immunostaining of all pituitary hormones is mandatory for correct classification. Histopathology. 2001;39(3):310–9.CrossRef Ho DM, Hsu CY, Ting LT, Chiang H. Plurihormonal pituitary adenomas: immunostaining of all pituitary hormones is mandatory for correct classification. Histopathology. 2001;39(3):310–9.CrossRef
15.
Zurück zum Zitat Pawlikowski M, Kunert-Radek J, Radek M. Plurihormonality of pituitary adenomas in light of immunohistochemical studies. Endokrynol Pol. 2010;61:63–6.PubMed Pawlikowski M, Kunert-Radek J, Radek M. Plurihormonality of pituitary adenomas in light of immunohistochemical studies. Endokrynol Pol. 2010;61:63–6.PubMed
17.
Zurück zum Zitat Matsuno A, Sasaki T, Mochizuki T, et al. A case of Cushing’s disease presenting with hypersecretion of GH and PRL five years after adrenalectomy. Acta Neurochir. 1996;138:1002.CrossRef Matsuno A, Sasaki T, Mochizuki T, et al. A case of Cushing’s disease presenting with hypersecretion of GH and PRL five years after adrenalectomy. Acta Neurochir. 1996;138:1002.CrossRef
18.
Zurück zum Zitat BatisseLignier M, Maqdasy S, Mestre B, Roche B, Chazal J, Tauveron I. An unusual plurihormonal pituitary adenoma. Endocr Abst. 2012;29:1540. BatisseLignier M, Maqdasy S, Mestre B, Roche B, Chazal J, Tauveron I. An unusual plurihormonal pituitary adenoma. Endocr Abst. 2012;29:1540.
19.
Zurück zum Zitat Kageyama K, Nigawara T, Kamata Y, Terui K, Anzai J, Sakihara S, Suda T. A multihormonal pituitary adenoma with growth hormone and adrenocorticotropic hormone production, causing acromegaly and Cushing disease. Am J Med Sci. 2002;324(6):326–30.CrossRef Kageyama K, Nigawara T, Kamata Y, Terui K, Anzai J, Sakihara S, Suda T. A multihormonal pituitary adenoma with growth hormone and adrenocorticotropic hormone production, causing acromegaly and Cushing disease. Am J Med Sci. 2002;324(6):326–30.CrossRef
21.
Zurück zum Zitat Cooper O, Melmed S. Subclinical hyperfunctioning pituitary adenomas: the silent tumors. Best Pract Res Clin Endocrinol Metab. 2012;26(4):447–60.CrossRef Cooper O, Melmed S. Subclinical hyperfunctioning pituitary adenomas: the silent tumors. Best Pract Res Clin Endocrinol Metab. 2012;26(4):447–60.CrossRef
23.
Zurück zum Zitat Dumbrava M, Costinean S, Stancu C, Badiu C. “Mind the gap” in immunohistochemical techniques used in pathology of pituitary adenomas. Acta Endo (Buc). 2005;1(4):411–22.CrossRef Dumbrava M, Costinean S, Stancu C, Badiu C. “Mind the gap” in immunohistochemical techniques used in pathology of pituitary adenomas. Acta Endo (Buc). 2005;1(4):411–22.CrossRef
24.
Zurück zum Zitat Saeger W, Ludecke DK, Buchfelder M, Fahlbusch R, Quabbe HJ, Petersenn S. Pathohistological classification of pituitary tumors: 10 years of experience with the German Pituitary Tumor Registry. Eur J Endocrinol. 2007;156(2):203–16.CrossRef Saeger W, Ludecke DK, Buchfelder M, Fahlbusch R, Quabbe HJ, Petersenn S. Pathohistological classification of pituitary tumors: 10 years of experience with the German Pituitary Tumor Registry. Eur J Endocrinol. 2007;156(2):203–16.CrossRef
25.
Zurück zum Zitat Bradley KJWJ, Turner HE. Non-functioning pituitary adenomas with positive immunoreactivity for ACTH behave more aggressively than ACTH immunonegative tumors but do not recur more frequently. Clin Endocrinol (Oxf). 2003;58(1):59–64.CrossRef Bradley KJWJ, Turner HE. Non-functioning pituitary adenomas with positive immunoreactivity for ACTH behave more aggressively than ACTH immunonegative tumors but do not recur more frequently. Clin Endocrinol (Oxf). 2003;58(1):59–64.CrossRef
Metadaten
Titel
Plurihormonal pituitary macroadenoma:  a case report
verfasst von
Ebtesam Allehaibi
Mussa H. AlMalki
Imad Brema
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
Journal of Medical Case Reports / Ausgabe 1/2021
Elektronische ISSN: 1752-1947
DOI
https://doi.org/10.1186/s13256-021-02948-6

Weitere Artikel der Ausgabe 1/2021

Journal of Medical Case Reports 1/2021 Zur Ausgabe