Skip to main content
Erschienen in: Cardiovascular Toxicology 7/2022

14.05.2022

Protective Effect of Curcumin, Chrysin and Thymoquinone Injection on Trastuzumab-Induced Cardiotoxicity via Mitochondrial Protection

verfasst von: Leila Rezaie Shirmard, Mohammad Shabani, Amin Ashena Moghadam, Nasim Zamani, Hadi Ghanbari, Ahmad Salimi

Erschienen in: Cardiovascular Toxicology | Ausgabe 7/2022

Einloggen, um Zugang zu erhalten

Abstract

Mitochondrial dysfunction may lead to cardiomyocyte death in trastuzumab (TZM)-induced cardiotoxicity. Accordingly, this study was designed to evaluate the mitochondrial protective effects of curcumin, chrysin and thymoquinone alone in TZM-induced cardiotoxicity in the rats. Forty-eight male adult Wistar rats were divided into eight groups: control group (normal saline), TZM group (2.5 mg/kg I.P. injection, daily), TZM + curcumin group (10 mg/kg, I.P. injection, daily), TZM + chrysin (10 mg/kg, I.P. injection, daily), TZM + thymoquinone (0.5 mg/kg, I.P. injection, daily), curcumin group (10 mg/kg, I.P. injection, daily), chrysin group (10 mg/kg, I.P. injection, daily) and thymoquinone group (10 mg/kg, I.P. injection, daily). Blood and tissue were collected on day 11 and used for assessment of creatine phosphokinase, lactate dehydrogenase (LDH), troponin, malondialdehyde (MDA) amount, glutathione levels and mitochondrial toxicity parameters. TZM increased mitochondrial impairments (reactive oxygen species formation, mitochondrial swelling, mitochondrial membrane potential collapse and decline in succinate dehydrogenase activity) and histopathological alterations (hypertrophy, enlarged cell, disarrangement, myocytes degeneration, infiltration of fat in some areas, hemorrhage and focal vascular thrombosis) in rat heart. As well as TZM produced a significant increase in the level of CK, LDH, troponin, MDA, glutathione disulfide. In most experiments, the co-injection of curcumin, chrysin and thymoquinone with TZM restored the level of CK, LDH, troponin, MDA, GSH, mitochondrial impairments and histopathological alterations. The study revealed the cardioprotective effects of curcumin, chrysin and thymoquinone against TZM-induced cardiotoxicity which could be attributed to their antioxidant and mitochondrial protection activities.
Literatur
1.
Zurück zum Zitat Spector, N. L., & Blackwell, K. L. (2009). Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2–positive breast cancer. Journal of Clinical Oncology, 27, 5838–5847.PubMedCrossRef Spector, N. L., & Blackwell, K. L. (2009). Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2–positive breast cancer. Journal of Clinical Oncology, 27, 5838–5847.PubMedCrossRef
2.
Zurück zum Zitat Nami, B., Maadi, H., & Wang, Z. (2018). Mechanisms underlying the action and synergism of trastuzumab and pertuzumab in targeting HER2-positive breast cancer. Cancers, 10, 342.PubMedCentralCrossRef Nami, B., Maadi, H., & Wang, Z. (2018). Mechanisms underlying the action and synergism of trastuzumab and pertuzumab in targeting HER2-positive breast cancer. Cancers, 10, 342.PubMedCentralCrossRef
3.
Zurück zum Zitat Moilanen, T., Jokimäki, A., Tenhunen, O., & Koivunen, J. P. (2018). Trastuzumab-induced cardiotoxicity and its risk factors in real-world setting of breast cancer patients. Journal of Cancer Research and Clinical Oncology, 144, 1613–1621.PubMedCrossRef Moilanen, T., Jokimäki, A., Tenhunen, O., & Koivunen, J. P. (2018). Trastuzumab-induced cardiotoxicity and its risk factors in real-world setting of breast cancer patients. Journal of Cancer Research and Clinical Oncology, 144, 1613–1621.PubMedCrossRef
4.
Zurück zum Zitat Nowsheen, S., Aziz, K., Park, J. Y., Lerman, A., Villarraga, H. R., Ruddy, K. J., et al. (2018). Trastuzumab in female breast cancer patients with reduced left ventricular ejection fraction. Journal of the American Heart Association, 7, e008637.PubMedPubMedCentralCrossRef Nowsheen, S., Aziz, K., Park, J. Y., Lerman, A., Villarraga, H. R., Ruddy, K. J., et al. (2018). Trastuzumab in female breast cancer patients with reduced left ventricular ejection fraction. Journal of the American Heart Association, 7, e008637.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Mohan, N., Jiang, J., Dokmanovic, M., & Wu, W. J. (2018). Trastuzumab-mediated cardiotoxicity: Current understanding, challenges, and frontiers. Antibody therapeutics, 1, 13–17.PubMedPubMedCentralCrossRef Mohan, N., Jiang, J., Dokmanovic, M., & Wu, W. J. (2018). Trastuzumab-mediated cardiotoxicity: Current understanding, challenges, and frontiers. Antibody therapeutics, 1, 13–17.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Nowsheen, S., Viscuse, P. V., O’Sullivan, C. C., Sandhu, N. P., Haddad, T. C., Blaes, A., et al. (2017). Incidence, diagnosis, and treatment of cardiac toxicity from trastuzumab in patients with breast cancer. Current Breast Cancer Reports, 9, 173–182.PubMedPubMedCentralCrossRef Nowsheen, S., Viscuse, P. V., O’Sullivan, C. C., Sandhu, N. P., Haddad, T. C., Blaes, A., et al. (2017). Incidence, diagnosis, and treatment of cardiac toxicity from trastuzumab in patients with breast cancer. Current Breast Cancer Reports, 9, 173–182.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Gabani, M., Castañeda, D., Nguyen, Q. M., Choi, S.-K., Chen, C., Mapara, A., et al. (2021). Association of cardiotoxicity with doxorubicin and trastuzumab: A double-edged sword in chemotherapy. Cureus, 13, e18194.PubMedPubMedCentral Gabani, M., Castañeda, D., Nguyen, Q. M., Choi, S.-K., Chen, C., Mapara, A., et al. (2021). Association of cardiotoxicity with doxorubicin and trastuzumab: A double-edged sword in chemotherapy. Cureus, 13, e18194.PubMedPubMedCentral
8.
Zurück zum Zitat Xu, Y., Li, X., Liu, X., & Zhou, M. (2010). Neuregulin-1/ErbB signaling and chronic heart failure. Advances in Pharmacology, 59, 31–51.PubMedCrossRef Xu, Y., Li, X., Liu, X., & Zhou, M. (2010). Neuregulin-1/ErbB signaling and chronic heart failure. Advances in Pharmacology, 59, 31–51.PubMedCrossRef
9.
Zurück zum Zitat El-Gamal, M. I., Mewafi, N. H., Abdelmotteleb, N. E., Emara, M. A., Tarazi, H., Sbenati, R. M., et al. (2021). A review of HER4 (ErbB4) kinase, its impact on cancer, and its inhibitors. Molecules, 26, 7376.PubMedPubMedCentralCrossRef El-Gamal, M. I., Mewafi, N. H., Abdelmotteleb, N. E., Emara, M. A., Tarazi, H., Sbenati, R. M., et al. (2021). A review of HER4 (ErbB4) kinase, its impact on cancer, and its inhibitors. Molecules, 26, 7376.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Gorini, S., De Angelis, A., Berrino, L., Malara, N., Rosano, G., & Ferraro, E. (2018). Chemotherapeutic drugs and mitochondrial dysfunction: focus on doxorubicin, trastuzumab, and sunitinib. Oxidative Medicine and Cellular Longevity, 2018, 1–15.CrossRef Gorini, S., De Angelis, A., Berrino, L., Malara, N., Rosano, G., & Ferraro, E. (2018). Chemotherapeutic drugs and mitochondrial dysfunction: focus on doxorubicin, trastuzumab, and sunitinib. Oxidative Medicine and Cellular Longevity, 2018, 1–15.CrossRef
11.
Zurück zum Zitat Li, A., Gao, M., Jiang, W., Qin, Y., & Gong, G. (2020). Mitochondrial dynamics in adult cardiomyocytes and heart diseases. Frontiers in Cell and Developmental Biology, 8, 1555. Li, A., Gao, M., Jiang, W., Qin, Y., & Gong, G. (2020). Mitochondrial dynamics in adult cardiomyocytes and heart diseases. Frontiers in Cell and Developmental Biology, 8, 1555.
12.
Zurück zum Zitat Dorn, G. W., II. (2013). Mitochondrial dynamics in heart disease. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1833, 233–241.CrossRef Dorn, G. W., II. (2013). Mitochondrial dynamics in heart disease. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1833, 233–241.CrossRef
13.
Zurück zum Zitat Lochner, A., Wang, H.-H., Reiter, R. J., Guo, R., & Zhou, H. (2021). Role of mitochondrial quality control in myocardial and microvascular physiology and pathophysiology. Frontiers in Physiology, 12, 1495.CrossRef Lochner, A., Wang, H.-H., Reiter, R. J., Guo, R., & Zhou, H. (2021). Role of mitochondrial quality control in myocardial and microvascular physiology and pathophysiology. Frontiers in Physiology, 12, 1495.CrossRef
14.
Zurück zum Zitat Kornfeld, O. S., Hwang, S., Disatnik, M.-H., Chen, C.-H., Qvit, N., & Mochly-Rosen, D. (2015). Mitochondrial reactive oxygen species at the heart of the matter: New therapeutic approaches for cardiovascular diseases. Circulation Research, 116, 1783–1799.PubMedPubMedCentralCrossRef Kornfeld, O. S., Hwang, S., Disatnik, M.-H., Chen, C.-H., Qvit, N., & Mochly-Rosen, D. (2015). Mitochondrial reactive oxygen species at the heart of the matter: New therapeutic approaches for cardiovascular diseases. Circulation Research, 116, 1783–1799.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Sun, L., Wang, H., Yu, S., Zhang, L., Jiang, J., & Zhou, Q. (2022). Herceptin induces ferroptosis and mitochondrial dysfunction in H9c2 cells. International Journal of Molecular Medicine, 49, 1–8.PubMed Sun, L., Wang, H., Yu, S., Zhang, L., Jiang, J., & Zhou, Q. (2022). Herceptin induces ferroptosis and mitochondrial dysfunction in H9c2 cells. International Journal of Molecular Medicine, 49, 1–8.PubMed
16.
Zurück zum Zitat Varga, Z. V., Ferdinandy, P., Liaudet, L., & Pacher, P. (2015). Drug-induced mitochondrial dysfunction and cardiotoxicity. American Journal of Physiology-Heart and Circulatory Physiology, 309, H1453–H1467.PubMedPubMedCentralCrossRef Varga, Z. V., Ferdinandy, P., Liaudet, L., & Pacher, P. (2015). Drug-induced mitochondrial dysfunction and cardiotoxicity. American Journal of Physiology-Heart and Circulatory Physiology, 309, H1453–H1467.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Barish, R., Gates, E., & Barac, A. (2019). Trastuzumab-induced cardiomyopathy. Cardiology Clinics, 37, 407–418.PubMedCrossRef Barish, R., Gates, E., & Barac, A. (2019). Trastuzumab-induced cardiomyopathy. Cardiology Clinics, 37, 407–418.PubMedCrossRef
18.
Zurück zum Zitat Stéphane, F. F. Y., Jules, B. K. J., Batiha, G.E.-S., Ali, I., & Bruno, L. N. (2021). Extraction of bioactive compounds from medicinal plants and herbs. London: InTech Open. Stéphane, F. F. Y., Jules, B. K. J., Batiha, G.E.-S., Ali, I., & Bruno, L. N. (2021). Extraction of bioactive compounds from medicinal plants and herbs. London: InTech Open.
19.
Zurück zum Zitat Shah, S. M. A., Akram, M., Riaz, M., Munir, N., & Rasool, G. (2019). Cardioprotective potential of plant-derived molecules: A scientific and medicinal approach. Dose-Response, 17, 1559325819852243.PubMedPubMedCentralCrossRef Shah, S. M. A., Akram, M., Riaz, M., Munir, N., & Rasool, G. (2019). Cardioprotective potential of plant-derived molecules: A scientific and medicinal approach. Dose-Response, 17, 1559325819852243.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Sharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., et al. (2020). Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Frontiers in Physiology, 11, 694.PubMedPubMedCentralCrossRef Sharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., et al. (2020). Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Frontiers in Physiology, 11, 694.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Farkhondeh, T., Samarghandian, S., & Bafandeh, F. (2019). The cardiovascular protective effects of chrysin: a narrative review on experimental researches. Cardiovascular & Hematological Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Cardiovascular & Hematological Agents), 17, 17–27.CrossRef Farkhondeh, T., Samarghandian, S., & Bafandeh, F. (2019). The cardiovascular protective effects of chrysin: a narrative review on experimental researches. Cardiovascular & Hematological Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Cardiovascular & Hematological Agents), 17, 17–27.CrossRef
22.
Zurück zum Zitat Yarmohammadi, F., Hayes, A. W., & Karimi, G. (2021). Protective effects of curcumin on chemical and drug-induced cardiotoxicity: A review. Naunyn-Schmiedeberg’s Archives of Pharmacology, 394, 1341–1353.PubMedCrossRef Yarmohammadi, F., Hayes, A. W., & Karimi, G. (2021). Protective effects of curcumin on chemical and drug-induced cardiotoxicity: A review. Naunyn-Schmiedeberg’s Archives of Pharmacology, 394, 1341–1353.PubMedCrossRef
23.
Zurück zum Zitat Liu, H., Liu, H. Y., Jiang, Y. N., & Li, N. (2016). Protective effect of thymoquinone improves cardiovascular function, and attenuates oxidative stress, inflammation and apoptosis by mediating the PI3K/Akt pathway in diabetic rats. Molecular Medicine Reports, 13, 2836–2842.PubMedCrossRef Liu, H., Liu, H. Y., Jiang, Y. N., & Li, N. (2016). Protective effect of thymoquinone improves cardiovascular function, and attenuates oxidative stress, inflammation and apoptosis by mediating the PI3K/Akt pathway in diabetic rats. Molecular Medicine Reports, 13, 2836–2842.PubMedCrossRef
24.
Zurück zum Zitat Jakubczyk, K., Drużga, A., Katarzyna, J., & Skonieczna-Żydecka, K. (2020). Antioxidant potential of curcumin—a Meta-analysis of randomized clinical trials. Antioxidants, 9, 1092.PubMedCentralCrossRef Jakubczyk, K., Drużga, A., Katarzyna, J., & Skonieczna-Żydecka, K. (2020). Antioxidant potential of curcumin—a Meta-analysis of randomized clinical trials. Antioxidants, 9, 1092.PubMedCentralCrossRef
25.
Zurück zum Zitat Kohandel, Z., Farkhondeh, T., Aschner, M., & Samarghandian, S. (2021). Anti-inflammatory effects of thymoquinone and its protective effects against several diseases. Biomedicine & Pharmacotherapy, 138, 111492.CrossRef Kohandel, Z., Farkhondeh, T., Aschner, M., & Samarghandian, S. (2021). Anti-inflammatory effects of thymoquinone and its protective effects against several diseases. Biomedicine & Pharmacotherapy, 138, 111492.CrossRef
26.
Zurück zum Zitat Khezri, S., Sabzalipour, T., Jahedsani, A., Azizian, S., Atashbar, S., & Salimi, A. (2020). Chrysin ameliorates aluminum p hosphide-induced oxidative stress and mitochondrial damages in rat cardiomyocytes and isolated mitochondria. Environmental Toxicology, 35, 1114–1124.PubMedCrossRef Khezri, S., Sabzalipour, T., Jahedsani, A., Azizian, S., Atashbar, S., & Salimi, A. (2020). Chrysin ameliorates aluminum p hosphide-induced oxidative stress and mitochondrial damages in rat cardiomyocytes and isolated mitochondria. Environmental Toxicology, 35, 1114–1124.PubMedCrossRef
27.
Zurück zum Zitat Sahebkar, A., Serban, M.-C., Ursoniu, S., & Banach, M. (2015). Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials. Journal of functional foods, 18, 898–909.CrossRef Sahebkar, A., Serban, M.-C., Ursoniu, S., & Banach, M. (2015). Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials. Journal of functional foods, 18, 898–909.CrossRef
28.
Zurück zum Zitat Mani, R., & Natesan, V. (2018). Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry, 145, 187–196.PubMedCrossRef Mani, R., & Natesan, V. (2018). Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry, 145, 187–196.PubMedCrossRef
29.
Zurück zum Zitat Tabassum, S., Rosli, N., Ichwan, S. J. A., & Mishra, P. (2021). Thymoquinone and its pharmacological perspective: A review. Pharmacological Research-Modern Chinese Medicine, 1, 100020.CrossRef Tabassum, S., Rosli, N., Ichwan, S. J. A., & Mishra, P. (2021). Thymoquinone and its pharmacological perspective: A review. Pharmacological Research-Modern Chinese Medicine, 1, 100020.CrossRef
30.
Zurück zum Zitat Ghareghomi, S., Rahban, M., Moosavi-Movahedi, Z., Habibi-Rezaei, M., Saso, L., & Moosavi-Movahedi, A. A. (2021). The potential role of curcumin in modulating the master antioxidant pathway in diabetic hypoxia-induced complications. Molecules, 26, 7658.PubMedPubMedCentralCrossRef Ghareghomi, S., Rahban, M., Moosavi-Movahedi, Z., Habibi-Rezaei, M., Saso, L., & Moosavi-Movahedi, A. A. (2021). The potential role of curcumin in modulating the master antioxidant pathway in diabetic hypoxia-induced complications. Molecules, 26, 7658.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Hasanuzzaman, M., Bhuyan, M., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., et al. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9, 681.PubMedCentralCrossRef Hasanuzzaman, M., Bhuyan, M., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., et al. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9, 681.PubMedCentralCrossRef
32.
Zurück zum Zitat Sabet, N. S., Atashbar, S., Khanlou, E. M., Kahrizi, F., & Salimi, A. (2020). Curcumin attenuates bevacizumab-induced toxicity via suppressing oxidative stress and preventing mitochondrial dysfunction in heart mitochondria. Naunyn-Schmiedeberg’s Archives of Pharmacology, 393, 1447–1457.PubMedCrossRef Sabet, N. S., Atashbar, S., Khanlou, E. M., Kahrizi, F., & Salimi, A. (2020). Curcumin attenuates bevacizumab-induced toxicity via suppressing oxidative stress and preventing mitochondrial dysfunction in heart mitochondria. Naunyn-Schmiedeberg’s Archives of Pharmacology, 393, 1447–1457.PubMedCrossRef
33.
Zurück zum Zitat Hafez, A. A., Jamali, Z., Khezri, S., & Salimi, A. (2021). Thymoquinone reduces mitochondrial damage and death of cardiomyocytes induced by clozapine. Naunyn-Schmiedeberg’s Archives of Pharmacology, 394, 1675–1684.PubMedCrossRef Hafez, A. A., Jamali, Z., Khezri, S., & Salimi, A. (2021). Thymoquinone reduces mitochondrial damage and death of cardiomyocytes induced by clozapine. Naunyn-Schmiedeberg’s Archives of Pharmacology, 394, 1675–1684.PubMedCrossRef
34.
Zurück zum Zitat Olorundare, O., Adeneye, A., Akinsola, A., Soyemi, S., Mgbehoma, A., Okoye, I., et al. (2020). African vegetables (Clerodendrum volubile Leaf and Irvingia gabonensis seed extracts) effectively mitigate trastuzumab-induced cardiotoxicity in wistar rats. Oxidative Medicine and Cellular Longevity, 2020, 1–15. Olorundare, O., Adeneye, A., Akinsola, A., Soyemi, S., Mgbehoma, A., Okoye, I., et al. (2020). African vegetables (Clerodendrum volubile Leaf and Irvingia gabonensis seed extracts) effectively mitigate trastuzumab-induced cardiotoxicity in wistar rats. Oxidative Medicine and Cellular Longevity, 2020, 1–15.
35.
Zurück zum Zitat Ahmadabady, S., Beheshti, F., Shahidpour, F., Khordad, E., & Hosseini, M. (2021). A protective effect of curcumin on cardiovascular oxidative stress indicators in systemic inflammation induced by lipopolysaccharide in rats. Biochemistry and Biophysics Reports, 25, 100908.PubMedPubMedCentralCrossRef Ahmadabady, S., Beheshti, F., Shahidpour, F., Khordad, E., & Hosseini, M. (2021). A protective effect of curcumin on cardiovascular oxidative stress indicators in systemic inflammation induced by lipopolysaccharide in rats. Biochemistry and Biophysics Reports, 25, 100908.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Zhai, K., Hu, L., Chen, J., Fu, C.-Y., & Chen, Q. (2008). Chrysin induces hyperalgesia via the GABAA receptor in mice. Planta Medica, 74, 1229–1234.PubMedCrossRef Zhai, K., Hu, L., Chen, J., Fu, C.-Y., & Chen, Q. (2008). Chrysin induces hyperalgesia via the GABAA receptor in mice. Planta Medica, 74, 1229–1234.PubMedCrossRef
37.
Zurück zum Zitat Olorundare, O. E., Adeneye, A. A., Akinsola, A. O., Ajayi, A. M., Agede, O. A., Soyemi, S. S., et al. (2021). Therapeutic potentials of selected antihypertensive agents and their fixed-dose combinations against trastuzumab-mediated cardiotoxicity. Frontiers in Pharmacology, 11, 2160.CrossRef Olorundare, O. E., Adeneye, A. A., Akinsola, A. O., Ajayi, A. M., Agede, O. A., Soyemi, S. S., et al. (2021). Therapeutic potentials of selected antihypertensive agents and their fixed-dose combinations against trastuzumab-mediated cardiotoxicity. Frontiers in Pharmacology, 11, 2160.CrossRef
38.
Zurück zum Zitat Nabofa, W. E., Alashe, O. O., Oyeyemi, O. T., Attah, A. F., Oyagbemi, A. A., Omobowale, T. O., et al. (2018). Cardioprotective effects of curcumin-nisin based poly lactic acid nanoparticle on myocardial infarction in guinea pigs. Scientific Reports, 8, 1–11.CrossRef Nabofa, W. E., Alashe, O. O., Oyeyemi, O. T., Attah, A. F., Oyagbemi, A. A., Omobowale, T. O., et al. (2018). Cardioprotective effects of curcumin-nisin based poly lactic acid nanoparticle on myocardial infarction in guinea pigs. Scientific Reports, 8, 1–11.CrossRef
39.
Zurück zum Zitat Iacobellis, G., Corradi, D., & Sharma, A. M. (2005). Epicardial adipose tissue: Anatomic, biomolecular and clinical relationships with the heart. Nature Clinical Practice Cardiovascular medicine, 2, 536–543.PubMedCrossRef Iacobellis, G., Corradi, D., & Sharma, A. M. (2005). Epicardial adipose tissue: Anatomic, biomolecular and clinical relationships with the heart. Nature Clinical Practice Cardiovascular medicine, 2, 536–543.PubMedCrossRef
40.
Zurück zum Zitat Fraga, C. G., Leibovitz, B. E., & Tappel, A. L. (1988). Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: Characterization and comparison with homogenates and microsomes. Free Radical Biology and Medicine, 4, 155–161.PubMedCrossRef Fraga, C. G., Leibovitz, B. E., & Tappel, A. L. (1988). Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: Characterization and comparison with homogenates and microsomes. Free Radical Biology and Medicine, 4, 155–161.PubMedCrossRef
41.
Zurück zum Zitat Ellman, G. L., & Gan, G. L. (1964). Erythrocyte glutathione-levels in patients of a mental hospital. Nature, 202, 904–904.PubMedCrossRef Ellman, G. L., & Gan, G. L. (1964). Erythrocyte glutathione-levels in patients of a mental hospital. Nature, 202, 904–904.PubMedCrossRef
42.
Zurück zum Zitat Djafarzadeh, S., & Jakob, S. M. (2017). Isolation of intact mitochondria from skeletal muscle by differential centrifugation for high-resolution respirometry measurements. JoVE (Journal of Visualized Experiments). https://doi.org/10.3791/55251 Djafarzadeh, S., & Jakob, S. M. (2017). Isolation of intact mitochondria from skeletal muscle by differential centrifugation for high-resolution respirometry measurements. JoVE (Journal of Visualized Experiments). https://​doi.​org/​10.​3791/​55251
44.
Zurück zum Zitat Mattiasson, G. (2004). Analysis of mitochondrial generation and release of reactive oxygen species. Cytometry Part A: The Journal of the International Society for Analytical Cytology, 62, 89–96.CrossRef Mattiasson, G. (2004). Analysis of mitochondrial generation and release of reactive oxygen species. Cytometry Part A: The Journal of the International Society for Analytical Cytology, 62, 89–96.CrossRef
45.
Zurück zum Zitat Cottet-Rousselle, C., Ronot, X., Leverve, X., & Mayol, J. F. (2011). Cytometric assessment of mitochondria using fluorescent probes. Cytometry Part A, 79, 405–425.CrossRef Cottet-Rousselle, C., Ronot, X., Leverve, X., & Mayol, J. F. (2011). Cytometric assessment of mitochondria using fluorescent probes. Cytometry Part A, 79, 405–425.CrossRef
46.
Zurück zum Zitat Pentassuglia, L., & Sawyer, D. B. (2009). The role of Neuregulin-1β/ErbB signaling in the heart. Experimental Cell Research, 315, 627–637.PubMedCrossRef Pentassuglia, L., & Sawyer, D. B. (2009). The role of Neuregulin-1β/ErbB signaling in the heart. Experimental Cell Research, 315, 627–637.PubMedCrossRef
47.
Zurück zum Zitat Geissler, A., Ryzhov, S., & Sawyer, D. B. (2020). Neuregulins: Protective and reparative growth factors in multiple forms of cardiovascular disease. Clinical Science, 134, 2623–2643.PubMedCrossRef Geissler, A., Ryzhov, S., & Sawyer, D. B. (2020). Neuregulins: Protective and reparative growth factors in multiple forms of cardiovascular disease. Clinical Science, 134, 2623–2643.PubMedCrossRef
48.
Zurück zum Zitat Onitilo, A. A., Engel, J. M., & Stankowski, R. V. (2014). Cardiovascular toxicity associated with adjuvant trastuzumab therapy: Prevalence, patient characteristics, and risk factors. Therapeutic Advances in Drug Safety, 5, 154–166.PubMedPubMedCentralCrossRef Onitilo, A. A., Engel, J. M., & Stankowski, R. V. (2014). Cardiovascular toxicity associated with adjuvant trastuzumab therapy: Prevalence, patient characteristics, and risk factors. Therapeutic Advances in Drug Safety, 5, 154–166.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Lai, L., & Qiu, H. (2020). The physiological and pathological roles of mitochondrial calcium uptake in heart. International Journal of Molecular Sciences, 21, 7689.PubMedCentralCrossRef Lai, L., & Qiu, H. (2020). The physiological and pathological roles of mitochondrial calcium uptake in heart. International Journal of Molecular Sciences, 21, 7689.PubMedCentralCrossRef
51.
Zurück zum Zitat Zeglinski, M., Ludke, A., Jassal, D. S., & Singal, P. K. (2011). Trastuzumab-induced cardiac dysfunction: A ‘dual-hit.’ Experimental & Clinical Cardiology, 16, 70. Zeglinski, M., Ludke, A., Jassal, D. S., & Singal, P. K. (2011). Trastuzumab-induced cardiac dysfunction: A ‘dual-hit.’ Experimental & Clinical Cardiology, 16, 70.
53.
Zurück zum Zitat Goszcz, K., Deakin, S. J., Duthie, G. G., Stewart, D., Leslie, S. J., & Megson, I. L. (2015). Antioxidants in cardiovascular therapy: Panacea or false hope? Frontiers in Cardiovascular Medicine, 2, 29.PubMedPubMedCentralCrossRef Goszcz, K., Deakin, S. J., Duthie, G. G., Stewart, D., Leslie, S. J., & Megson, I. L. (2015). Antioxidants in cardiovascular therapy: Panacea or false hope? Frontiers in Cardiovascular Medicine, 2, 29.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Angsutararux, P., Luanpitpong, S., & Issaragrisil, S. (2015). Chemotherapy-induced cardiotoxicity: overview of the roles of oxidative stress. Oxidative Medicine and Cellular Longevity, 2015, 1–13.CrossRef Angsutararux, P., Luanpitpong, S., & Issaragrisil, S. (2015). Chemotherapy-induced cardiotoxicity: overview of the roles of oxidative stress. Oxidative Medicine and Cellular Longevity, 2015, 1–13.CrossRef
55.
Zurück zum Zitat Tang, H., Zhao, J., Feng, R., Pu, P., & Wen, L. (2022). Reducing oxidative stress may be important for treating pirarubicin-induced cardiotoxicity with schisandrin B. Experimental and Therapeutic Medicine, 23, 1–8. Tang, H., Zhao, J., Feng, R., Pu, P., & Wen, L. (2022). Reducing oxidative stress may be important for treating pirarubicin-induced cardiotoxicity with schisandrin B. Experimental and Therapeutic Medicine, 23, 1–8.
56.
Zurück zum Zitat D’Oria, R., Schipani, R., Leonardini, A., Natalicchio, A., Perrini, S., Cignarelli, A., et al. (2020). The role of oxidative stress in cardiac disease: from physiological response to injury factor. Oxidative Medicine and Cellular Longevity, 2020, 1–29.CrossRef D’Oria, R., Schipani, R., Leonardini, A., Natalicchio, A., Perrini, S., Cignarelli, A., et al. (2020). The role of oxidative stress in cardiac disease: from physiological response to injury factor. Oxidative Medicine and Cellular Longevity, 2020, 1–29.CrossRef
58.
Zurück zum Zitat Mantawy, E. M., El-Bakly, W. M., Esmat, A., Badr, A. M., & El-Demerdash, E. (2014). Chrysin alleviates acute doxorubicin cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. European Journal of Pharmacology, 728, 107–118.PubMedCrossRef Mantawy, E. M., El-Bakly, W. M., Esmat, A., Badr, A. M., & El-Demerdash, E. (2014). Chrysin alleviates acute doxorubicin cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. European Journal of Pharmacology, 728, 107–118.PubMedCrossRef
59.
Zurück zum Zitat Naik, S. R., Thakare, V. N., & Patil, S. R. (2011). Protective effect of curcumin on experimentally induced inflammation, hepatotoxicity and cardiotoxicity in rats: Evidence of its antioxidant property. Experimental and Toxicologic Pathology, 63, 419–431.PubMedCrossRef Naik, S. R., Thakare, V. N., & Patil, S. R. (2011). Protective effect of curcumin on experimentally induced inflammation, hepatotoxicity and cardiotoxicity in rats: Evidence of its antioxidant property. Experimental and Toxicologic Pathology, 63, 419–431.PubMedCrossRef
60.
Zurück zum Zitat Bahadır, A., Ceyhan, A., Gergin, Ö. Ö., Yalçın, B., Ülger, M., Özyazgan, T. M., et al. (2018). Protective effects of curcumin and beta-carotene on cisplatin-induced cardiotoxicity: An experimental rat model. Anatolian Journal of Cardiology, 19, 213.PubMedPubMedCentral Bahadır, A., Ceyhan, A., Gergin, Ö. Ö., Yalçın, B., Ülger, M., Özyazgan, T. M., et al. (2018). Protective effects of curcumin and beta-carotene on cisplatin-induced cardiotoxicity: An experimental rat model. Anatolian Journal of Cardiology, 19, 213.PubMedPubMedCentral
61.
Zurück zum Zitat Chakraborty, M., Bhattacharjee, A., & Kamath, J. V. (2017). Cardioprotective effect of curcumin and piperine combination against cyclophosphamide-induced cardiotoxicity. Indian Journal of Pharmacology, 49, 65.PubMedPubMedCentral Chakraborty, M., Bhattacharjee, A., & Kamath, J. V. (2017). Cardioprotective effect of curcumin and piperine combination against cyclophosphamide-induced cardiotoxicity. Indian Journal of Pharmacology, 49, 65.PubMedPubMedCentral
62.
Zurück zum Zitat Alam, M. F., Khan, G., Safhi, M. M., Alshahrani, S., Siddiqui, R., Sivagurunathan Moni, S., et al. (2018). Thymoquinone ameliorates doxorubicin-induced cardiotoxicity in Swiss Albino mice by modulating oxidative damage and cellular inflammation. Cardiology Research and Practice, 2018, 1–6.CrossRef Alam, M. F., Khan, G., Safhi, M. M., Alshahrani, S., Siddiqui, R., Sivagurunathan Moni, S., et al. (2018). Thymoquinone ameliorates doxorubicin-induced cardiotoxicity in Swiss Albino mice by modulating oxidative damage and cellular inflammation. Cardiology Research and Practice, 2018, 1–6.CrossRef
63.
Zurück zum Zitat Karabulut, D., Ozturk, E., Kaymak, E., Akin, A. T., & Yakan, B. (2021). Thymoquinone attenuates doxorubicin-cardiotoxicity in rats. Journal of Biochemical and Molecular Toxicology, 35, e22618.PubMedCrossRef Karabulut, D., Ozturk, E., Kaymak, E., Akin, A. T., & Yakan, B. (2021). Thymoquinone attenuates doxorubicin-cardiotoxicity in rats. Journal of Biochemical and Molecular Toxicology, 35, e22618.PubMedCrossRef
64.
Zurück zum Zitat Bagheri, H., Ghasemi, F., Barreto, G. E., Rafiee, R., Sathyapalan, T., & Sahebkar, A. (2020). Effects of curcumin on mitochondria in neurodegenerative diseases. BioFactors, 46, 5–20.PubMedCrossRef Bagheri, H., Ghasemi, F., Barreto, G. E., Rafiee, R., Sathyapalan, T., & Sahebkar, A. (2020). Effects of curcumin on mitochondria in neurodegenerative diseases. BioFactors, 46, 5–20.PubMedCrossRef
65.
Zurück zum Zitat Kicinska, A., & Jarmuszkiewicz, W. (2020). Flavonoids and mitochondria: Activation of cytoprotective pathways? Molecules, 25, 3060.PubMedCentralCrossRef Kicinska, A., & Jarmuszkiewicz, W. (2020). Flavonoids and mitochondria: Activation of cytoprotective pathways? Molecules, 25, 3060.PubMedCentralCrossRef
66.
Zurück zum Zitat Khalifa, A. A., Rashad, R. M., & El-Hadidy, W. F. (2021). Thymoquinone protects against cardiac mitochondrial DNA loss, oxidative stress, inflammation and apoptosis in isoproterenol-induced myocardial infarction in rats. Heliyon, 7, e07561.PubMedPubMedCentralCrossRef Khalifa, A. A., Rashad, R. M., & El-Hadidy, W. F. (2021). Thymoquinone protects against cardiac mitochondrial DNA loss, oxidative stress, inflammation and apoptosis in isoproterenol-induced myocardial infarction in rats. Heliyon, 7, e07561.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Su, X., Zhou, M., Li, Y., Zhang, J., An, N., Yang, F., et al. (2022). Protective effects of natural products against myocardial ischemia/reperfusion: Mitochondria-targeted therapeutics. Biomedicine & Pharmacotherapy, 149, 112893.CrossRef Su, X., Zhou, M., Li, Y., Zhang, J., An, N., Yang, F., et al. (2022). Protective effects of natural products against myocardial ischemia/reperfusion: Mitochondria-targeted therapeutics. Biomedicine & Pharmacotherapy, 149, 112893.CrossRef
68.
Zurück zum Zitat Ojha, S., Al Taee, H., Goyal, S., Mahajan, U. B., Patil, C. R., Arya, D., et al. (2016). Cardioprotective potentials of plant-derived small molecules against doxorubicin associated cardiotoxicity. Oxidative Medicine and Cellular Longevity, 2016, 1–19. Ojha, S., Al Taee, H., Goyal, S., Mahajan, U. B., Patil, C. R., Arya, D., et al. (2016). Cardioprotective potentials of plant-derived small molecules against doxorubicin associated cardiotoxicity. Oxidative Medicine and Cellular Longevity, 2016, 1–19.
69.
Zurück zum Zitat Yang, Y., Wei, S., Zhang, B., & Li, W. (2021). Recent progress in environmental toxins-induced cardiotoxicity and protective potential of natural products. Frontiers in Pharmacology, 12, 1733. Yang, Y., Wei, S., Zhang, B., & Li, W. (2021). Recent progress in environmental toxins-induced cardiotoxicity and protective potential of natural products. Frontiers in Pharmacology, 12, 1733.
70.
Zurück zum Zitat Swamy, A. V., Gulliaya, S., Thippeswamy, A., Koti, B. C., & Manjula, D. V. (2012). Cardioprotective effect of curcumin against doxorubicin-induced myocardial toxicity in albino rats. Indian Journal of Pharmacology, 44, 73.PubMedPubMedCentralCrossRef Swamy, A. V., Gulliaya, S., Thippeswamy, A., Koti, B. C., & Manjula, D. V. (2012). Cardioprotective effect of curcumin against doxorubicin-induced myocardial toxicity in albino rats. Indian Journal of Pharmacology, 44, 73.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Izem-Meziane, M., Djerdjouri, B., Rimbaud, S., Caffin, F., Fortin, D., Garnier, A., et al. (2012). Catecholamine-induced cardiac mitochondrial dysfunction and mPTP opening: Protective effect of curcumin. American Journal of Physiology-Heart and Circulatory Physiology, 302, H665–H674.PubMedCrossRef Izem-Meziane, M., Djerdjouri, B., Rimbaud, S., Caffin, F., Fortin, D., Garnier, A., et al. (2012). Catecholamine-induced cardiac mitochondrial dysfunction and mPTP opening: Protective effect of curcumin. American Journal of Physiology-Heart and Circulatory Physiology, 302, H665–H674.PubMedCrossRef
Metadaten
Titel
Protective Effect of Curcumin, Chrysin and Thymoquinone Injection on Trastuzumab-Induced Cardiotoxicity via Mitochondrial Protection
verfasst von
Leila Rezaie Shirmard
Mohammad Shabani
Amin Ashena Moghadam
Nasim Zamani
Hadi Ghanbari
Ahmad Salimi
Publikationsdatum
14.05.2022
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 7/2022
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-022-09750-w

Weitere Artikel der Ausgabe 7/2022

Cardiovascular Toxicology 7/2022 Zur Ausgabe