Skip to main content
Erschienen in: Lasers in Medical Science 7/2021

13.11.2020 | Original Article

Quantitative analysis of collagen and capillaries of 3.8-μm laser-induced cutaneous thermal injury and wound healing

verfasst von: Qiong Ma, Yingwei Fan, Zhenkun Luo, Yufang Cui, Hongxiang Kang

Erschienen in: Lasers in Medical Science | Ausgabe 7/2021

Einloggen, um Zugang zu erhalten

Abstract

The biological effects of cutaneous thermal injury and wound healing after 3.8-μm laser radiation were investigated by observing the effects of different radiation doses on in vivo cutaneous tissue. A 3.8-μm laser with a radiation dose that changes from small (5.07) to large (15.74 J/cm2) was used to irradiate mouse skin with the 2 × 4 grid array method. The healing progress of laser-injured spots, pathological morphology (H&E staining), and collagen structure changes (Sirius Red staining) were dynamically observed from one hour to 21 days after laser radiation, and the capillary count and collagen content were quantitatively and comparatively analyzed. When the radiation doses were 5.07, 6.77, 8.21, and 9.42 J/cm2, a white coagulation spot predominantly occurred, and when the radiation doses were 11.09 12.23, 14.13, 15.74 J/cm2, a small injured spot predominantly occurred. One hour after radiation, the collagen structure was obviously damaged. Three to fourteen days after radiation, the hyperplasia and morphology of the collagen in the 5.07 J/cm2 group were significantly better than those in the other dose groups. The number of capillaries in the 5.07 J/cm2 and 6.77 J/cm2 groups was significantly higher than that in the normal group (P < 0.01 or P < 0.05). Twenty-one days after radiation, only the collagen in the 5.07 J/cm2 group was densely arranged, and it was basically close to the normal group level. The collagen content in the 5.07 J/cm2 group was approximately 10.7%, but it was still lower than that in the normal group (with a collagen content of approximately 14.1%). The collagen in the other dose groups was diminished and had not returned to the normal group level. As the dose of the 3.8-μm laser increased, skin thermal injury gradually increased, the full-thickness skin increased, and the collagen content decreased, showing better dose-dependent and time-dependent effect relationships. The increase in capillaries in the early stage of laser radiation and the significant increase in collagen content in the middle and late stages of laser radiation were two important factors that promoted wound healing.
Literatur
1.
Zurück zum Zitat Yun SH, Kwok SJJ (2017) Light in diagnosis, therapy and surgery. Nat Biomed Eng 1:1–39CrossRef Yun SH, Kwok SJJ (2017) Light in diagnosis, therapy and surgery. Nat Biomed Eng 1:1–39CrossRef
2.
Zurück zum Zitat Zeitler E, Wolbarsht ML (1971) Laser characteristics that might be useful in biology. In: Laser applications in medicine and biology. Springer, Boston, pp 1–18 Zeitler E, Wolbarsht ML (1971) Laser characteristics that might be useful in biology. In: Laser applications in medicine and biology. Springer, Boston, pp 1–18
3.
Zurück zum Zitat Zhang J, Shan Q, Ma P, Jiang Y, Chen P, Wen J, Zhou Y, Qian H, Pei X (2004) Differentiation potential of bone marrow mesenchymal stem cells into retina in normal and laser-injured rat eye. Sci China Ser C Life Sci 47(3):241–250CrossRef Zhang J, Shan Q, Ma P, Jiang Y, Chen P, Wen J, Zhou Y, Qian H, Pei X (2004) Differentiation potential of bone marrow mesenchymal stem cells into retina in normal and laser-injured rat eye. Sci China Ser C Life Sci 47(3):241–250CrossRef
5.
Zurück zum Zitat Kelly A, Pai A, Lertsakdadet B, Choi B, Kelly KM (2020) Microvascular effects of pulsed dye laser in combination with oxymetazoline. Lasers Surg Med 52:17–22CrossRef Kelly A, Pai A, Lertsakdadet B, Choi B, Kelly KM (2020) Microvascular effects of pulsed dye laser in combination with oxymetazoline. Lasers Surg Med 52:17–22CrossRef
7.
Zurück zum Zitat Barat K (2003) Laser accidents: occurrence and response. Health Phys 84:S93–S95CrossRef Barat K (2003) Laser accidents: occurrence and response. Health Phys 84:S93–S95CrossRef
8.
Zurück zum Zitat Chu EA, Li M, Lazarow FB, Wong BJ (2014) Mid-infrared laser orbital septal tightening: ex vivo dosimetry study and pilot clinical study. JAMA Facial Plast Surg 16(6):425–431CrossRef Chu EA, Li M, Lazarow FB, Wong BJ (2014) Mid-infrared laser orbital septal tightening: ex vivo dosimetry study and pilot clinical study. JAMA Facial Plast Surg 16(6):425–431CrossRef
9.
Zurück zum Zitat Fan YW, Sun Y, Chang W, Zhang XR, Tang J, Zhang LW, Liao HE (2018) Bioluminescence imaging and two-photon microscopy-guided laser ablation of GBM decreases tumor burden. Theranostics. 8(15):4072–4085CrossRef Fan YW, Sun Y, Chang W, Zhang XR, Tang J, Zhang LW, Liao HE (2018) Bioluminescence imaging and two-photon microscopy-guided laser ablation of GBM decreases tumor burden. Theranostics. 8(15):4072–4085CrossRef
10.
Zurück zum Zitat Das D, Reed S, Klokkevold PR, Wu BM (2013) A high-throughput comparative characterization of laser-induced soft tissue damage using 3D digital microscopy. Lasers Med Sci 28:657CrossRef Das D, Reed S, Klokkevold PR, Wu BM (2013) A high-throughput comparative characterization of laser-induced soft tissue damage using 3D digital microscopy. Lasers Med Sci 28:657CrossRef
11.
Zurück zum Zitat Haak C, Hannibal J, Paasch U, Anderson R, Haedersdal M (2017) Laser-induced thermal coagulation enhances skin uptake of topically applied compounds. Lasers Surg Med 49:582–591CrossRef Haak C, Hannibal J, Paasch U, Anderson R, Haedersdal M (2017) Laser-induced thermal coagulation enhances skin uptake of topically applied compounds. Lasers Surg Med 49:582–591CrossRef
12.
Zurück zum Zitat Evers M, Ha L, Casper M, Welford D, Kositratna G, Birngruber R, Manstein D (2018) Assessment of skin lesions produced by focused, tunable, mid-infrared chalcogenide laser radiation. Lasers Surg Med 50:961–972CrossRef Evers M, Ha L, Casper M, Welford D, Kositratna G, Birngruber R, Manstein D (2018) Assessment of skin lesions produced by focused, tunable, mid-infrared chalcogenide laser radiation. Lasers Surg Med 50:961–972CrossRef
13.
Zurück zum Zitat Spiegel J, Hansen C, Treede R-D (2000) Clinical evaluation criteria for the assessment of impaired pain sensitivity by thuliumlaser evoked potentials. Clin Neurophysiol 111(4):725–735CrossRef Spiegel J, Hansen C, Treede R-D (2000) Clinical evaluation criteria for the assessment of impaired pain sensitivity by thuliumlaser evoked potentials. Clin Neurophysiol 111(4):725–735CrossRef
14.
Zurück zum Zitat Apel C, Meister J, Ioana RS, Franzen R, Hering P, Gutknecht N (2002) The ablation threshold of Er:YAG and Er: YSGG laser radiation in dental enamel. Lasers Med Sci 17(4):246–252CrossRef Apel C, Meister J, Ioana RS, Franzen R, Hering P, Gutknecht N (2002) The ablation threshold of Er:YAG and Er: YSGG laser radiation in dental enamel. Lasers Med Sci 17(4):246–252CrossRef
15.
Zurück zum Zitat Lapidoth M, Yagima, Odo ME, Odo LM (2008) Novel use of erbium: YAG (2,940-nm) laser for fractional ablative photothermolysis in the treatment of photodamaged facial skin: a pilot study. Dermatol Surg 34(8):1048–1053PubMed Lapidoth M, Yagima, Odo ME, Odo LM (2008) Novel use of erbium: YAG (2,940-nm) laser for fractional ablative photothermolysis in the treatment of photodamaged facial skin: a pilot study. Dermatol Surg 34(8):1048–1053PubMed
16.
Zurück zum Zitat Ansari MA, Erfanzadeh M, Mohajerani E (2013) Mechanisms of laser-tissue interaction: II. Tissue thermal properties. J Lasers Med Sci 4(3):99–106PubMedPubMedCentral Ansari MA, Erfanzadeh M, Mohajerani E (2013) Mechanisms of laser-tissue interaction: II. Tissue thermal properties. J Lasers Med Sci 4(3):99–106PubMedPubMedCentral
18.
Zurück zum Zitat Baum CL, Arpey CJ (2005) Normal cutaneous wound healing: clinical correlation with cellular and molecular events. Dermatol Surg 31:674–686 discussion 686CrossRef Baum CL, Arpey CJ (2005) Normal cutaneous wound healing: clinical correlation with cellular and molecular events. Dermatol Surg 31:674–686 discussion 686CrossRef
19.
Zurück zum Zitat Fan YW, Ma Q, Liang J, Lu YX, Ni B, Luo ZK, Cui YF, Kang HX (2019) Quantitative and qualitative evaluation of recovery process of a 1 064 nm laser on laser-induced skin injury: in vivo experimental research. Laser Phys Lett 16:115604CrossRef Fan YW, Ma Q, Liang J, Lu YX, Ni B, Luo ZK, Cui YF, Kang HX (2019) Quantitative and qualitative evaluation of recovery process of a 1 064 nm laser on laser-induced skin injury: in vivo experimental research. Laser Phys Lett 16:115604CrossRef
20.
Zurück zum Zitat Zhang YM, Ruan J, Xiao R, Zhang Q, Huang YS (2013) Comparative study of 1,064-nm laser-induced skin burn and thermal skin burn. Cell Biochem Biophys 67(3):1005–1014CrossRef Zhang YM, Ruan J, Xiao R, Zhang Q, Huang YS (2013) Comparative study of 1,064-nm laser-induced skin burn and thermal skin burn. Cell Biochem Biophys 67(3):1005–1014CrossRef
21.
Zurück zum Zitat Sanders DL, Reinisch L (2000) Wound healing and collagen thermal damage in 7.5-μsec pulsed CO2 laser skin incisions. Lasers Med Sci 26(1):22–32CrossRef Sanders DL, Reinisch L (2000) Wound healing and collagen thermal damage in 7.5-μsec pulsed CO2 laser skin incisions. Lasers Med Sci 26(1):22–32CrossRef
22.
Zurück zum Zitat Vincelette RL, Noojin GD, Harbert CA, Schuster KJ, Shingledecker AD, Stolarski D, Kumru SS, Oliver JW (2014) Porcine skin damage thresholds for 0.6 to 9.5 cm beam diameters from 1070-nm continuous-wave infrared laser radiation. J Biomed Opt 19(3):035007CrossRef Vincelette RL, Noojin GD, Harbert CA, Schuster KJ, Shingledecker AD, Stolarski D, Kumru SS, Oliver JW (2014) Porcine skin damage thresholds for 0.6 to 9.5 cm beam diameters from 1070-nm continuous-wave infrared laser radiation. J Biomed Opt 19(3):035007CrossRef
23.
Zurück zum Zitat Oliver JW, Kumru SS, Thomas RJ, Stolarski D, Noojin G, Hodnett H, Harbert C, Schuster K, Foltz M, Cain C, Noojin I, Finkeldei C, Buffington G (2010) Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures. J Biomed Opt 15(6):065008CrossRef Oliver JW, Kumru SS, Thomas RJ, Stolarski D, Noojin G, Hodnett H, Harbert C, Schuster K, Foltz M, Cain C, Noojin I, Finkeldei C, Buffington G (2010) Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures. J Biomed Opt 15(6):065008CrossRef
24.
Zurück zum Zitat Chen B, Thomsen SL, Thomas RJ, Welch A (2006) Modeling thermal damage in skin from 2000-nm laser irradiation. J Biomed Opt 11(6):064028CrossRef Chen B, Thomsen SL, Thomas RJ, Welch A (2006) Modeling thermal damage in skin from 2000-nm laser irradiation. J Biomed Opt 11(6):064028CrossRef
25.
Zurück zum Zitat Boretsky AR, Clary JE, Noojin GD, and Rockwell BA (2019) Mid-infrared femtosecond laser damage thresholds in skin. Proc. SPIE 10876, Optical Interactions with Tissue and Cells XXX, 108760J Boretsky AR, Clary JE, Noojin GD, and Rockwell BA (2019) Mid-infrared femtosecond laser damage thresholds in skin. Proc. SPIE 10876, Optical Interactions with Tissue and Cells XXX, 108760J
26.
Zurück zum Zitat Liu H, Dang Y, Wang Z, Chai X, Ren Q (2008) Laser induced collagen remodeling: a comparative study in vivo on mouse model. Lasers Surg Med 40(1):13–19CrossRef Liu H, Dang Y, Wang Z, Chai X, Ren Q (2008) Laser induced collagen remodeling: a comparative study in vivo on mouse model. Lasers Surg Med 40(1):13–19CrossRef
27.
Zurück zum Zitat Jowett N, Wöllmer W, Mlynarek AM, Wiseman P, Segal B, Franjic K, Miller RJD (2013) Heat generation during ablation of porcine skin with erbium:YAG laser vs a novel picosecond infrared laser. JAMA Otolaryngol–Head Neck Surg 139(8):828CrossRef Jowett N, Wöllmer W, Mlynarek AM, Wiseman P, Segal B, Franjic K, Miller RJD (2013) Heat generation during ablation of porcine skin with erbium:YAG laser vs a novel picosecond infrared laser. JAMA Otolaryngol–Head Neck Surg 139(8):828CrossRef
28.
Zurück zum Zitat Johnson TE, Roy MJ (2016) Cutaneous sensation threshold for 3.8 μm radiation from a short duration pulsed laser on the calves of human subjects: a pilot study. J Laser Appl 18:334CrossRef Johnson TE, Roy MJ (2016) Cutaneous sensation threshold for 3.8 μm radiation from a short duration pulsed laser on the calves of human subjects: a pilot study. J Laser Appl 18:334CrossRef
29.
Zurück zum Zitat Pazyar N, Yaghoobi R, Rafiee E, Mehrabian A, Feily A (2014) Skin wound healing and phytomedicine: a review. Skin Pharmacol Physiol 27:303–310CrossRef Pazyar N, Yaghoobi R, Rafiee E, Mehrabian A, Feily A (2014) Skin wound healing and phytomedicine: a review. Skin Pharmacol Physiol 27:303–310CrossRef
30.
31.
Zurück zum Zitat Alexander JW (1983) The influence of hair-removal methods on wound infections. Arch Surg 118(3):347CrossRef Alexander JW (1983) The influence of hair-removal methods on wound infections. Arch Surg 118(3):347CrossRef
Metadaten
Titel
Quantitative analysis of collagen and capillaries of 3.8-μm laser-induced cutaneous thermal injury and wound healing
verfasst von
Qiong Ma
Yingwei Fan
Zhenkun Luo
Yufang Cui
Hongxiang Kang
Publikationsdatum
13.11.2020
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 7/2021
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-020-03193-x

Weitere Artikel der Ausgabe 7/2021

Lasers in Medical Science 7/2021 Zur Ausgabe