Skip to main content
Erschienen in: European Radiology 12/2022

09.06.2022 | Chest

Quantitative CT and machine learning classification of fibrotic interstitial lung diseases

verfasst von: Chi Wan Koo, James M. Williams, Grace Liu, Ananya Panda, Parth P. Patel, Livia Maria M. Frota Lima, Ronald A. Karwoski, Teng Moua, Nicholas B. Larson, Alex Bratt

Erschienen in: European Radiology | Ausgabe 12/2022

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To evaluate quantitative computed tomography (QCT) features and QCT feature-based machine learning (ML) models in classifying interstitial lung diseases (ILDs). To compare QCT-ML and deep learning (DL) models’ performance.

Methods

We retrospectively identified 1085 patients with pathologically proven usual interstitial pneumonitis (UIP), nonspecific interstitial pneumonitis (NSIP), and chronic hypersensitivity pneumonitis (CHP) who underwent peri-biopsy chest CT. Kruskal-Wallis test evaluated QCT feature associations with each ILD. QCT features, patient demographics, and pulmonary function test (PFT) results trained eXtreme Gradient Boosting (training/validation set n = 911) yielding 3 models: M1 = QCT features only; M2 = M1 plus age and sex; M3 = M2 plus PFT results. A DL model was also developed. ML and DL model areas under the receiver operating characteristic curve (AUC) and 95% confidence intervals (CIs) were compared for multiclass (UIP vs. NSIP vs. CHP) and binary (UIP vs. non-UIP) classification performances.

Results

The majority (69/78 [88%]) of QCT features successfully differentiated the 3 ILDs (adjusted p ≤ 0.05). All QCT-ML models achieved higher AUC than the DL model (multiclass AUC micro-averages 0.910, 0.910, 0.925, and 0.798 and macro-averages 0.895, 0.893, 0.925, and 0.779 for M1, M2, M3, and DL respectively; binary AUC 0.880, 0.899, 0.898, and 0.869 for M1, M2, M3, and DL respectively). M3 demonstrated statistically significant better performance compared to M2 (∆AUC: 0.015, CI: [0.002, 0.029]) for multiclass prediction.

Conclusions

QCT features successfully differentiated pathologically proven UIP, NSIP, and CHP. While QCT-based ML models outperformed a DL model for classifying ILDs, further investigations are warranted to determine if QCT-ML, DL, or a combination will be superior in ILD classification.

Key Points

• Quantitative CT features successfully differentiated pathologically proven UIP, NSIP, and CHP.
• Our quantitative CT-based machine learning models demonstrated high performance in classifying UIP, NSIP, and CHP histopathology, outperforming a deep learning model.
• While our quantitative CT-based machine learning models performed better than a DL model, additional investigations are needed to determine whether either or a combination of both approaches delivers superior diagnostic performance.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat McLean-Tooke A, Moore I, Lake F (2019) Idiopathic and immune-related pulmonary fibrosis: diagnostic and therapeutic challenges. Clin Transl Immunology 8(11):e1086 CrossRefPubMedPubMedCentral McLean-Tooke A, Moore I, Lake F (2019) Idiopathic and immune-related pulmonary fibrosis: diagnostic and therapeutic challenges. Clin Transl Immunology 8(11):e1086 CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Salvatore M, Smith ML (2018) Cross sectional imaging of pulmonary fibrosis translating pathology into radiology. Clin Imaging 51:332–336 CrossRefPubMed Salvatore M, Smith ML (2018) Cross sectional imaging of pulmonary fibrosis translating pathology into radiology. Clin Imaging 51:332–336 CrossRefPubMed
3.
Zurück zum Zitat Kambouchner M, Levy P, Nicholson AG et al (2014) Prognostic relevance of histological variants in nonspecific interstitial pneumonia. Histopathology 65(4):549–560 CrossRefPubMed Kambouchner M, Levy P, Nicholson AG et al (2014) Prognostic relevance of histological variants in nonspecific interstitial pneumonia. Histopathology 65(4):549–560 CrossRefPubMed
4.
Zurück zum Zitat Akashi T, Takemura T, Ando N et al (2009) Histopathologic analysis of sixteen autopsy cases of chronic hypersensitivity pneumonitis and comparison with idiopathic pulmonary fibrosis/usual interstitial pneumonia. Am J Clin Pathol 131(3):405–415 CrossRefPubMed Akashi T, Takemura T, Ando N et al (2009) Histopathologic analysis of sixteen autopsy cases of chronic hypersensitivity pneumonitis and comparison with idiopathic pulmonary fibrosis/usual interstitial pneumonia. Am J Clin Pathol 131(3):405–415 CrossRefPubMed
5.
Zurück zum Zitat Soffer S, Morgenthau AS, Shimon O et al (2021) Artificial intelligence for interstitial lung disease analysis on chest computed tomography: a systematic review. Acad Radiol S1076-6332(21):00253–00251 Soffer S, Morgenthau AS, Shimon O et al (2021) Artificial intelligence for interstitial lung disease analysis on chest computed tomography: a systematic review. Acad Radiol S1076-6332(21):00253–00251
6.
Zurück zum Zitat Chen A, Karwoski RA, Gierada DS, Bartholmai BJ, Koo CW (2020) Quantitative CT analysis of diffuse lung disease. Radiographics 40(1):28–43 CrossRefPubMed Chen A, Karwoski RA, Gierada DS, Bartholmai BJ, Koo CW (2020) Quantitative CT analysis of diffuse lung disease. Radiographics 40(1):28–43 CrossRefPubMed
7.
Zurück zum Zitat Walsh SL, Humphries SM, Wells AU, Brown KK (2020) Imaging research in fibrotic lung disease; applying deep learning to unsolved problems. Lancet Respir Med 8:1144–1153 CrossRefPubMed Walsh SL, Humphries SM, Wells AU, Brown KK (2020) Imaging research in fibrotic lung disease; applying deep learning to unsolved problems. Lancet Respir Med 8:1144–1153 CrossRefPubMed
8.
Zurück zum Zitat Trusculescu AA, Manolescu D, Tudorache E, Oancea C (2020) Deep learning in interstitial lung disease-how long until daily practice. Eur Radiol 30(11):6285–6292 CrossRefPubMedPubMedCentral Trusculescu AA, Manolescu D, Tudorache E, Oancea C (2020) Deep learning in interstitial lung disease-how long until daily practice. Eur Radiol 30(11):6285–6292 CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Raghu G, Remy-Jardin M, Myers JL et al (2018) Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med 198(5):e44–e68 CrossRefPubMed Raghu G, Remy-Jardin M, Myers JL et al (2018) Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med 198(5):e44–e68 CrossRefPubMed
10.
Zurück zum Zitat Bartholmai BJ, Raghunath S, Karwoski RA et al (2013) Quantitative computed tomography imaging of interstitial lung diseases. J Thorac Imaging 28(5):298–307 CrossRefPubMed Bartholmai BJ, Raghunath S, Karwoski RA et al (2013) Quantitative computed tomography imaging of interstitial lung diseases. J Thorac Imaging 28(5):298–307 CrossRefPubMed
11.
Zurück zum Zitat Miller MR, Hankinson J, Brusasco V et al (2005) Standardisation of spirometry. Eur Respir J 26:319–338 CrossRefPubMed Miller MR, Hankinson J, Brusasco V et al (2005) Standardisation of spirometry. Eur Respir J 26:319–338 CrossRefPubMed
12.
Zurück zum Zitat Bratt A, Williams JM, Liu G et al (2022) Predicting usual interstitial pneumonia histopathology from chest CT imaging with deep learning. Chest 22:590–596 Bratt A, Williams JM, Liu G et al (2022) Predicting usual interstitial pneumonia histopathology from chest CT imaging with deep learning. Chest 22:590–596
13.
Zurück zum Zitat Walsh SL, Calandriello L, Silva M, Sverzellati N (2018) Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study. Lancet Respir Med 6(11):837–845 CrossRefPubMed Walsh SL, Calandriello L, Silva M, Sverzellati N (2018) Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study. Lancet Respir Med 6(11):837–845 CrossRefPubMed
14.
Zurück zum Zitat Chiu T, Tsai Y, Su S (2021) Automatic detect lung node with deep learning in segmentation and imbalance data labeling. Sci Rep. 11:11174 Chiu T, Tsai Y, Su S (2021) Automatic detect lung node with deep learning in segmentation and imbalance data labeling. Sci Rep. 11:11174
15.
Zurück zum Zitat Tan M, Le Q (2019) Efficientnet: Rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning. PMLR; 97:6105-6114 Tan M, Le Q (2019) Efficientnet: Rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning. PMLR; 97:6105-6114
16.
Zurück zum Zitat Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: Bengio Y, LeCun Y (eds) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. Available via http://​arxiv.​org/​abs/​1412.​6980 Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: Bengio Y, LeCun Y (eds) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. Available via http://​arxiv.​org/​abs/​1412.​6980
17.
18.
Zurück zum Zitat Christe A, Peters AA, Drakopoulos D et al (2019) Computer-aided diagnosis of pulmonary fibrosis using deep learning and CT Images. Invest Radiol 54(10):627–632 CrossRefPubMedPubMedCentral Christe A, Peters AA, Drakopoulos D et al (2019) Computer-aided diagnosis of pulmonary fibrosis using deep learning and CT Images. Invest Radiol 54(10):627–632 CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Kim GB, Jung KH, Lee Y et al (2018) Comparison of shallow and deep learning methods on classifying the regional pattern of diffuse lung disease. J Digit Imaging 31(4):415–424 CrossRefPubMed Kim GB, Jung KH, Lee Y et al (2018) Comparison of shallow and deep learning methods on classifying the regional pattern of diffuse lung disease. J Digit Imaging 31(4):415–424 CrossRefPubMed
20.
Zurück zum Zitat Jacob J, Bartholmai BJ, Rajagopalan S et al (2018) Serial automated quantitative CT analysis in idiopathic pulmonary fibrosis: functional correlations and comparison with changes in visual CT scores. Eur Radiol 28(3):1318–1327 CrossRefPubMed Jacob J, Bartholmai BJ, Rajagopalan S et al (2018) Serial automated quantitative CT analysis in idiopathic pulmonary fibrosis: functional correlations and comparison with changes in visual CT scores. Eur Radiol 28(3):1318–1327 CrossRefPubMed
Metadaten
Titel
Quantitative CT and machine learning classification of fibrotic interstitial lung diseases
verfasst von
Chi Wan Koo
James M. Williams
Grace Liu
Ananya Panda
Parth P. Patel
Livia Maria M. Frota Lima
Ronald A. Karwoski
Teng Moua
Nicholas B. Larson
Alex Bratt
Publikationsdatum
09.06.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 12/2022
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-022-08875-4

Weitere Artikel der Ausgabe 12/2022

European Radiology 12/2022 Zur Ausgabe

Update Radiologie

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.