Skip to main content
Erschienen in: Inflammation 6/2021

18.06.2021 | Original Article

Schisandrin B Attenuates Airway Inflammation and Airway Remodeling in Asthma by Inhibiting NLRP3 Inflammasome Activation and Reducing Pyroptosis

verfasst von: Xiufeng Chen, Zhen Xiao, Zhiyan Jiang, Yonghong Jiang, Wen Li, Mingjing Wang

Erschienen in: Inflammation | Ausgabe 6/2021

Einloggen, um Zugang zu erhalten

Abstract

Asthma is a chronic inflammatory disorder of the airways. Schisandrin B (SB) is the main effective component. This study investigated the effects of SB on airway inflammation and airway remodeling in asthma. The rat model of asthma was established. The rats were treated with SB to evaluate the effects of SB on airway inflammation, airway remodeling, NLRP3 inflammasome activation, and pyroptosis. Alveolar macrophages of rats were isolated, and the macrophage inflammatory model was established by lipopolysaccharide (LPS) induction. The LPS-induced macrophages were treated with SB. The binding relationship between miR-135a-5p and TPRC1 was analyzed. LPS + SB-treated macrophages were transfected with miR-135a-5p inhibitor. The expressions of key factors of the STAT3/NF-κB pathway were detected. SB reduced airway inflammation and airway remodeling in asthmatic rats. SB inhibited NLRP3 inflammasome activation and reduced pyroptosis in asthmatic rats and LPS-induced macrophages. SB reversely regulated the miR-135a-5p/TRPC1 axis. Downregulation of miR-135a-5p attenuated the inhibitory effect of SB on NLRP3 inflammasome activation. SB inhibited the STAT3/NF-κB pathway via the miR-135a-5p/TRPC1 axis. In conclusion, SB inhibited NLRP3 inflammasome activation and reduced pyroptosis via the miR-135a-5p/TRPC1/STAT3/NF-κB axis, thus alleviating airway inflammation and airway remodeling in asthma. This study may confer novel insights for the management of asthma.
Literatur
1.
Zurück zum Zitat Radhakrishna, N., T.R. Tay, F. Hore-Lacy, R. Hoy, E. Dabscheck, and M. Hew. 2016. Profile of difficult to treat asthma patients referred for systematic assessment. Respir Med 117: 166–173.PubMedCrossRef Radhakrishna, N., T.R. Tay, F. Hore-Lacy, R. Hoy, E. Dabscheck, and M. Hew. 2016. Profile of difficult to treat asthma patients referred for systematic assessment. Respir Med 117: 166–173.PubMedCrossRef
2.
Zurück zum Zitat Bousquet, J., E. Mantzouranis, A.A. Cruz, N. Ait-Khaled, et al. 2010. Uniform definition of asthma severity, control, and exacerbations: Document presented for the World Health Organization Consultation on Severe Asthma. J Allergy Clin Immunol 126 (5): 926–938.PubMedCrossRef Bousquet, J., E. Mantzouranis, A.A. Cruz, N. Ait-Khaled, et al. 2010. Uniform definition of asthma severity, control, and exacerbations: Document presented for the World Health Organization Consultation on Severe Asthma. J Allergy Clin Immunol 126 (5): 926–938.PubMedCrossRef
3.
Zurück zum Zitat Akinbami, L.J., J.E. Moorman, A.E. Simon, and K.C. Schoendorf. 2014. Trends in racial disparities for asthma outcomes among children 0 to 17 years, 2001-2010. J Allergy Clin Immunol 134 (3): 547–553 e545.PubMedPubMedCentralCrossRef Akinbami, L.J., J.E. Moorman, A.E. Simon, and K.C. Schoendorf. 2014. Trends in racial disparities for asthma outcomes among children 0 to 17 years, 2001-2010. J Allergy Clin Immunol 134 (3): 547–553 e545.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Alhassan, S., Y. Hattab, O. Bajwa, E. Bihler, and A.C. Singh. 2016. Asthma. Crit Care Nurs Q 39 (2): 110–123.PubMedCrossRef Alhassan, S., Y. Hattab, O. Bajwa, E. Bihler, and A.C. Singh. 2016. Asthma. Crit Care Nurs Q 39 (2): 110–123.PubMedCrossRef
5.
Zurück zum Zitat Fergeson, J.E., S.S. Patel, and R.F. Lockey. 2017. Acute asthma, prognosis, and treatment. J Allergy Clin Immunol 139 (2): 438–447.PubMedCrossRef Fergeson, J.E., S.S. Patel, and R.F. Lockey. 2017. Acute asthma, prognosis, and treatment. J Allergy Clin Immunol 139 (2): 438–447.PubMedCrossRef
6.
Zurück zum Zitat Mims, J.W. 2015. Asthma: definitions and pathophysiology. Int Forum Allergy Rhinol 5 (Suppl 1): S2–S6.PubMedCrossRef Mims, J.W. 2015. Asthma: definitions and pathophysiology. Int Forum Allergy Rhinol 5 (Suppl 1): S2–S6.PubMedCrossRef
7.
Zurück zum Zitat Papi, A., C. Brightling, S.E. Pedersen, and H.K. Reddel. 2018. Asthma. Lancet 391 (10122): 783–800.PubMedCrossRef Papi, A., C. Brightling, S.E. Pedersen, and H.K. Reddel. 2018. Asthma. Lancet 391 (10122): 783–800.PubMedCrossRef
8.
Zurück zum Zitat Castillo, J.R., S.P. Peters, and W.W. Busse. 2017. Asthma exacerbations: Pathogenesis, prevention, and treatment. J Allergy Clin Immunol Pract 5 (4): 918–927.PubMedPubMedCentralCrossRef Castillo, J.R., S.P. Peters, and W.W. Busse. 2017. Asthma exacerbations: Pathogenesis, prevention, and treatment. J Allergy Clin Immunol Pract 5 (4): 918–927.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Boulet, L.P. 2018. Airway remodeling in asthma: Update on mechanisms and therapeutic approaches. Curr Opin Pulm Med 24 (1): 56–62.PubMedCrossRef Boulet, L.P. 2018. Airway remodeling in asthma: Update on mechanisms and therapeutic approaches. Curr Opin Pulm Med 24 (1): 56–62.PubMedCrossRef
10.
Zurück zum Zitat Liu, G., M.A. Cooley, P.M. Nair, C. Donovan, A.C. Hsu, A.G. Jarnicki, T.J. Haw, N.G. Hansbro, Q. Ge, A.C. Brown, H. Tay, P.S. Foster, P.A. Wark, J.C. Horvat, J.E. Bourke, C.L. Grainge, W.S. Argraves, B.G. Oliver, D.A. Knight, J.K. Burgess, and P.M. Hansbro. 2017. Airway remodelling and inflammation in asthma are dependent on the extracellular matrix protein fibulin-1c. J Pathol 243 (4): 510–523.PubMedCrossRef Liu, G., M.A. Cooley, P.M. Nair, C. Donovan, A.C. Hsu, A.G. Jarnicki, T.J. Haw, N.G. Hansbro, Q. Ge, A.C. Brown, H. Tay, P.S. Foster, P.A. Wark, J.C. Horvat, J.E. Bourke, C.L. Grainge, W.S. Argraves, B.G. Oliver, D.A. Knight, J.K. Burgess, and P.M. Hansbro. 2017. Airway remodelling and inflammation in asthma are dependent on the extracellular matrix protein fibulin-1c. J Pathol 243 (4): 510–523.PubMedCrossRef
11.
Zurück zum Zitat Al-Muhsen, S., J.R. Johnson, and Q. Hamid. 2011. Remodeling in asthma. J Allergy Clin Immunol 128 (3): 451–462 quiz 463-454.PubMedCrossRef Al-Muhsen, S., J.R. Johnson, and Q. Hamid. 2011. Remodeling in asthma. J Allergy Clin Immunol 128 (3): 451–462 quiz 463-454.PubMedCrossRef
12.
Zurück zum Zitat Du, H., Y. Wang, Y. Shi, J. Yu, W. Sun, and Y. Zhang. 2016. Effect of traditional Chinese medicine on inflammatory mediators in pediatric asthma. Mediat Inflamm 2016: 5143703.CrossRef Du, H., Y. Wang, Y. Shi, J. Yu, W. Sun, and Y. Zhang. 2016. Effect of traditional Chinese medicine on inflammatory mediators in pediatric asthma. Mediat Inflamm 2016: 5143703.CrossRef
13.
Zurück zum Zitat Rybnikar, M., K. Smejkal, and M. Zemlicka. 2019. Schisandra chinensis and its phytotherapeutical applications. Ceska Slov Farm 68 (3): 95–118.PubMed Rybnikar, M., K. Smejkal, and M. Zemlicka. 2019. Schisandra chinensis and its phytotherapeutical applications. Ceska Slov Farm 68 (3): 95–118.PubMed
14.
Zurück zum Zitat Nasser, M.I., S. Zhu, C. Chen, M. Zhao, H. Huang, and P. Zhu. 2020. A Comprehensive review on Schisandrin B and its biological properties. Oxidative Med Cell Longev 2020: 2172740.CrossRef Nasser, M.I., S. Zhu, C. Chen, M. Zhao, H. Huang, and P. Zhu. 2020. A Comprehensive review on Schisandrin B and its biological properties. Oxidative Med Cell Longev 2020: 2172740.CrossRef
15.
Zurück zum Zitat Leong, P.K., and K.M. Ko. 2016. Schisandrin B: A double-edged sword in nonalcoholic fatty liver disease. Oxidative Med Cell Longev 2016: 6171658.CrossRef Leong, P.K., and K.M. Ko. 2016. Schisandrin B: A double-edged sword in nonalcoholic fatty liver disease. Oxidative Med Cell Longev 2016: 6171658.CrossRef
16.
Zurück zum Zitat Ji, Z.R., W.L. Xue, and L. Zhang. 2019. Schisandrin B attenuates inflammation in LPS-induced sepsis through miR-17-5p downregulating TLR4. Inflammation 42 (2): 731–739.PubMedCrossRef Ji, Z.R., W.L. Xue, and L. Zhang. 2019. Schisandrin B attenuates inflammation in LPS-induced sepsis through miR-17-5p downregulating TLR4. Inflammation 42 (2): 731–739.PubMedCrossRef
17.
Zurück zum Zitat Mou, Z., Z. Feng, Z. Xu, F. Zhuang, X. Zheng, X. Li, J. Qian, and G. Liang. 2019. Schisandrin B alleviates diabetic nephropathy through suppressing excessive inflammation and oxidative stress. Biochem Biophys Res Commun 508 (1): 243–249.PubMedCrossRef Mou, Z., Z. Feng, Z. Xu, F. Zhuang, X. Zheng, X. Li, J. Qian, and G. Liang. 2019. Schisandrin B alleviates diabetic nephropathy through suppressing excessive inflammation and oxidative stress. Biochem Biophys Res Commun 508 (1): 243–249.PubMedCrossRef
18.
Zurück zum Zitat Zhang, X.Y., L.X. Zhang, Y.L. Guo, L.M. Zhao, X.Y. Tang, C.J. Tian, D.J. Cheng, X.L. Chen, L.J. Ma, and Z.C. Chen. 2016. Schisandrin B inhibits the proliferation of airway smooth muscle cells via microRNA-135a suppressing the expression of transient receptor potential channel 1. Cell Biol Int 40 (7): 742–749.PubMedCrossRef Zhang, X.Y., L.X. Zhang, Y.L. Guo, L.M. Zhao, X.Y. Tang, C.J. Tian, D.J. Cheng, X.L. Chen, L.J. Ma, and Z.C. Chen. 2016. Schisandrin B inhibits the proliferation of airway smooth muscle cells via microRNA-135a suppressing the expression of transient receptor potential channel 1. Cell Biol Int 40 (7): 742–749.PubMedCrossRef
19.
Zurück zum Zitat Zhang, X.Y., X.Y. Tang, L.J. Ma, Y.L. Guo, X.S. Li, L.M. Zhao, C.J. Tian, D.J. Cheng, Z.C. Chen, and L.X. Zhang. 2017. Schisandrin B down-regulated lncRNA BCYRN1 expression of airway smooth muscle cells by improving miR-150 expression to inhibit the proliferation and migration of ASMC in asthmatic rats. Cell Prolif 50 (6): e12382.PubMedCentralCrossRef Zhang, X.Y., X.Y. Tang, L.J. Ma, Y.L. Guo, X.S. Li, L.M. Zhao, C.J. Tian, D.J. Cheng, Z.C. Chen, and L.X. Zhang. 2017. Schisandrin B down-regulated lncRNA BCYRN1 expression of airway smooth muscle cells by improving miR-150 expression to inhibit the proliferation and migration of ASMC in asthmatic rats. Cell Prolif 50 (6): e12382.PubMedCentralCrossRef
20.
Zurück zum Zitat Agarwal, V., G.W. Bell, J.W. Nam, and D.P. Bartel. 2015. Predicting effective microRNA target sites in mammalian mRNAs. Elife 4. Agarwal, V., G.W. Bell, J.W. Nam, and D.P. Bartel. 2015. Predicting effective microRNA target sites in mammalian mRNAs. Elife 4.
21.
Zurück zum Zitat Maslan, J., and J.W. Mims. 2014. What is asthma? Pathophysiology, demographics, and health care costs. Otolaryngol Clin N Am 47 (1): 13–22.CrossRef Maslan, J., and J.W. Mims. 2014. What is asthma? Pathophysiology, demographics, and health care costs. Otolaryngol Clin N Am 47 (1): 13–22.CrossRef
22.
Zurück zum Zitat Bergeron, C., and L.P. Boulet. 2006. Structural changes in airway diseases: Characteristics, mechanisms, consequences, and pharmacologic modulation. Chest 129 (4): 1068–1087.PubMedCrossRef Bergeron, C., and L.P. Boulet. 2006. Structural changes in airway diseases: Characteristics, mechanisms, consequences, and pharmacologic modulation. Chest 129 (4): 1068–1087.PubMedCrossRef
23.
Zurück zum Zitat Lee, M.Y., C.S. Seo, N.H. Lee, H. Ha, J.A. Lee, H. Lee, K.Y. Lee, and H.K. Shin. 2010. Anti-asthmatic effect of schizandrin on OVA-induced airway inflammation in a murine asthma model. Int Immunopharmacol 10 (11): 1374–1379.PubMedCrossRef Lee, M.Y., C.S. Seo, N.H. Lee, H. Ha, J.A. Lee, H. Lee, K.Y. Lee, and H.K. Shin. 2010. Anti-asthmatic effect of schizandrin on OVA-induced airway inflammation in a murine asthma model. Int Immunopharmacol 10 (11): 1374–1379.PubMedCrossRef
24.
Zurück zum Zitat Lee, K.S., S.J. Park, S.R. Kim, K.H. Min, K.Y. Lee, Y.H. Choe, S.H. Hong, Y.R. Lee, J.S. Kim, S.J. Hong, and Y.C. Lee. 2008. Inhibition of VEGF blocks TGF-beta1 production through a PI3K/Akt signalling pathway. Eur Respir J 31 (3): 523–531.PubMedCrossRef Lee, K.S., S.J. Park, S.R. Kim, K.H. Min, K.Y. Lee, Y.H. Choe, S.H. Hong, Y.R. Lee, J.S. Kim, S.J. Hong, and Y.C. Lee. 2008. Inhibition of VEGF blocks TGF-beta1 production through a PI3K/Akt signalling pathway. Eur Respir J 31 (3): 523–531.PubMedCrossRef
25.
Zurück zum Zitat Wang, L., B. Zha, Q. Shen, H. Zou, C. Cheng, H. Wu, and R. Liu. 2018. Sevoflurane inhibits the Th2 response and NLRP3 expression in murine allergic airway inflammation. J Immunol Res 2018: 9021037.PubMedPubMedCentralCrossRef Wang, L., B. Zha, Q. Shen, H. Zou, C. Cheng, H. Wu, and R. Liu. 2018. Sevoflurane inhibits the Th2 response and NLRP3 expression in murine allergic airway inflammation. J Immunol Res 2018: 9021037.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Cheng, Y., S. Li, M. Wang, C. Cheng, and R. Liu. 2018. Peroxisome proliferator activated receptor gamma (PPARgamma) agonist rosiglitazone ameliorate airway inflammation by inhibiting toll-like receptor 2 (TLR2)/Nod-like receptor with pyrin domain containing 3 (NLRP3) inflammatory corpuscle activation in asthmatic mice. Med Sci Monit 24: 9045–9053.PubMedPubMedCentralCrossRef Cheng, Y., S. Li, M. Wang, C. Cheng, and R. Liu. 2018. Peroxisome proliferator activated receptor gamma (PPARgamma) agonist rosiglitazone ameliorate airway inflammation by inhibiting toll-like receptor 2 (TLR2)/Nod-like receptor with pyrin domain containing 3 (NLRP3) inflammatory corpuscle activation in asthmatic mice. Med Sci Monit 24: 9045–9053.PubMedPubMedCentralCrossRef
27.
28.
Zurück zum Zitat He, W.T., H. Wan, L. Hu, P. Chen, X. Wang, Z. Huang, Z.H. Yang, C.Q. Zhong, and J. Han. 2015. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res 25 (12): 1285–1298.PubMedPubMedCentralCrossRef He, W.T., H. Wan, L. Hu, P. Chen, X. Wang, Z. Huang, Z.H. Yang, C.Q. Zhong, and J. Han. 2015. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res 25 (12): 1285–1298.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Zhuang, J., H. Cui, L. Zhuang, Z. Zhai, F. Yang, G. Luo, J. He, H. Zhao, W. Zhao, Y. He, and E. Sun. 2020. Bronchial epithelial pyroptosis promotes airway inflammation in a murine model of toluene diisocyanate-induced asthma. Biomed Pharmacother 125: 109925.PubMedCrossRef Zhuang, J., H. Cui, L. Zhuang, Z. Zhai, F. Yang, G. Luo, J. He, H. Zhao, W. Zhao, Y. He, and E. Sun. 2020. Bronchial epithelial pyroptosis promotes airway inflammation in a murine model of toluene diisocyanate-induced asthma. Biomed Pharmacother 125: 109925.PubMedCrossRef
31.
Zurück zum Zitat Lamkanfi, M., and V.M. Dixit. 2014. Mechanisms and functions of inflammasomes. Cell 157 (5): 1013–1022.PubMedCrossRef Lamkanfi, M., and V.M. Dixit. 2014. Mechanisms and functions of inflammasomes. Cell 157 (5): 1013–1022.PubMedCrossRef
32.
Zurück zum Zitat Pu, Q., Y. Zhao, Y. Sun, T. Huang, P. Lin, C. Zhou, S. Qin, B.B. Singh, and M. Wu. 2019. TRPC1 intensifies house dust mite-induced airway remodeling by facilitating epithelial-to-mesenchymal transition and STAT3/NF-kappaB signaling. FASEB J 33 (1): 1074–1085.PubMedCrossRef Pu, Q., Y. Zhao, Y. Sun, T. Huang, P. Lin, C. Zhou, S. Qin, B.B. Singh, and M. Wu. 2019. TRPC1 intensifies house dust mite-induced airway remodeling by facilitating epithelial-to-mesenchymal transition and STAT3/NF-kappaB signaling. FASEB J 33 (1): 1074–1085.PubMedCrossRef
33.
Zurück zum Zitat Sui, Y., L. Bian, Q. Ai, Y. Yao, M. Yu, H. Gao, A. Zhang, X. Fu, L. Zhong, and D. Lu. 2019. Gastrodin inhibits inflammasome through the STAT3 signal pathways in TNA2 astrocytes and reactive astrocytes in experimentally induced cerebral ischemia in rats. NeuroMolecular Med 21 (3): 275–286.PubMedCrossRef Sui, Y., L. Bian, Q. Ai, Y. Yao, M. Yu, H. Gao, A. Zhang, X. Fu, L. Zhong, and D. Lu. 2019. Gastrodin inhibits inflammasome through the STAT3 signal pathways in TNA2 astrocytes and reactive astrocytes in experimentally induced cerebral ischemia in rats. NeuroMolecular Med 21 (3): 275–286.PubMedCrossRef
34.
Zurück zum Zitat Jones, T.L., D.M. Neville, and A.J. Chauhan. 2018. Diagnosis and treatment of severe asthma: A phenotype-based approach. Clin Med (Lond) 18 (Suppl 2): s36–s40.CrossRef Jones, T.L., D.M. Neville, and A.J. Chauhan. 2018. Diagnosis and treatment of severe asthma: A phenotype-based approach. Clin Med (Lond) 18 (Suppl 2): s36–s40.CrossRef
35.
Zurück zum Zitat Zhang, H.P., L. Wang, Z. Wang, X.R. Xu, X.M. Zhou, G. Liu, L.Y. He, J. Wang, A. Hsu, W.M. Li, and G. Wang. 2018. Chinese herbal medicine formula for acute asthma: A multi-center, randomized, double-blind, proof-of-concept trial. Respir Med 140: 42–49.PubMedCrossRef Zhang, H.P., L. Wang, Z. Wang, X.R. Xu, X.M. Zhou, G. Liu, L.Y. He, J. Wang, A. Hsu, W.M. Li, and G. Wang. 2018. Chinese herbal medicine formula for acute asthma: A multi-center, randomized, double-blind, proof-of-concept trial. Respir Med 140: 42–49.PubMedCrossRef
36.
Zurück zum Zitat Wang, M.H., C. Chen, M.L. Yeh, and J.G. Lin. 2019. Using traditional Chinese medicine to relieve asthma symptoms: A systematic review and meta-analysis. Am J Chin Med 47 (8): 1659–1674.PubMedCrossRef Wang, M.H., C. Chen, M.L. Yeh, and J.G. Lin. 2019. Using traditional Chinese medicine to relieve asthma symptoms: A systematic review and meta-analysis. Am J Chin Med 47 (8): 1659–1674.PubMedCrossRef
37.
Zurück zum Zitat Shergis, J.L., L. Wu, A.L. Zhang, X. Guo, C. Lu, and C.C. Xue. 2016. Herbal medicine for adults with asthma: A systematic review. J Asthma 53 (6): 650–659.PubMedCrossRef Shergis, J.L., L. Wu, A.L. Zhang, X. Guo, C. Lu, and C.C. Xue. 2016. Herbal medicine for adults with asthma: A systematic review. J Asthma 53 (6): 650–659.PubMedCrossRef
38.
Zurück zum Zitat Harrison, B.C., M.L. Bell, D.L. Allen, W.C. Byrnes, and L.A. Leinwand. 2002. Skeletal muscle adaptations in response to voluntary wheel running in myosin heavy chain null mice. J Appl Physiol (1985) 92 (1): 313–322.CrossRef Harrison, B.C., M.L. Bell, D.L. Allen, W.C. Byrnes, and L.A. Leinwand. 2002. Skeletal muscle adaptations in response to voluntary wheel running in myosin heavy chain null mice. J Appl Physiol (1985) 92 (1): 313–322.CrossRef
39.
Zurück zum Zitat Hirota, N., and J.G. Martin. 2013. Mechanisms of airway remodeling. Chest 144 (3): 1026–1032.PubMedCrossRef Hirota, N., and J.G. Martin. 2013. Mechanisms of airway remodeling. Chest 144 (3): 1026–1032.PubMedCrossRef
40.
Zurück zum Zitat Vanaja, S.K., V.A. Rathinam, and K.A. Fitzgerald. 2015. Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol 25 (5): 308–315.PubMedPubMedCentralCrossRef Vanaja, S.K., V.A. Rathinam, and K.A. Fitzgerald. 2015. Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol 25 (5): 308–315.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Theofani, E., M. Semitekolou, I. Morianos, K. Samitas, and G. Xanthou. 2019. Targeting NLRP3 inflammasome activation in severe asthma. J Clin Med 8 (10). Theofani, E., M. Semitekolou, I. Morianos, K. Samitas, and G. Xanthou. 2019. Targeting NLRP3 inflammasome activation in severe asthma. J Clin Med 8 (10).
43.
Zurück zum Zitat Shi, J., Y. Zhao, K. Wang, X. Shi, Y. Wang, H. Huang, Y. Zhuang, T. Cai, F. Wang, and F. Shao. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526 (7575): 660–665.PubMedCrossRef Shi, J., Y. Zhao, K. Wang, X. Shi, Y. Wang, H. Huang, Y. Zhuang, T. Cai, F. Wang, and F. Shao. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526 (7575): 660–665.PubMedCrossRef
44.
Zurück zum Zitat Ding, J., and F. Shao. 2017. SnapShot: The noncanonical inflammasome. Cell 168 (3): 544–544 e541.PubMedCrossRef Ding, J., and F. Shao. 2017. SnapShot: The noncanonical inflammasome. Cell 168 (3): 544–544 e541.PubMedCrossRef
45.
Zurück zum Zitat Pinkerton, J.W., R.Y. Kim, A.A.B. Robertson, J.A. Hirota, L.G. Wood, D.A. Knight, M.A. Cooper, L.A.J. O'Neill, J.C. Horvat, and P.M. Hansbro. 2017. Inflammasomes in the lung. Mol Immunol 86: 44–55.PubMedCrossRef Pinkerton, J.W., R.Y. Kim, A.A.B. Robertson, J.A. Hirota, L.G. Wood, D.A. Knight, M.A. Cooper, L.A.J. O'Neill, J.C. Horvat, and P.M. Hansbro. 2017. Inflammasomes in the lung. Mol Immunol 86: 44–55.PubMedCrossRef
46.
Zurück zum Zitat Gao, J., S. Peng, X. Shan, G. Deng, L. Shen, J. Sun, C. Jiang, X. Yang, Z. Chang, X. Sun, F. Feng, L. Kong, Y. Gu, W. Guo, Q. Xu, and Y. Sun. 2019. Inhibition of AIM2 inflammasome-mediated pyroptosis by Andrographolide contributes to amelioration of radiation-induced lung inflammation and fibrosis. Cell Death Dis 10 (12): 957.PubMedPubMedCentralCrossRef Gao, J., S. Peng, X. Shan, G. Deng, L. Shen, J. Sun, C. Jiang, X. Yang, Z. Chang, X. Sun, F. Feng, L. Kong, Y. Gu, W. Guo, Q. Xu, and Y. Sun. 2019. Inhibition of AIM2 inflammasome-mediated pyroptosis by Andrographolide contributes to amelioration of radiation-induced lung inflammation and fibrosis. Cell Death Dis 10 (12): 957.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Cheng, K.T., S. Xiong, Z. Ye, Z. Hong, A. di, K.M. Tsang, X. Gao, S. An, M. Mittal, S.M. Vogel, E.A. Miao, J. Rehman, and A.B. Malik. 2017. Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury. J Clin Invest 127 (11): 4124–4135.PubMedPubMedCentralCrossRef Cheng, K.T., S. Xiong, Z. Ye, Z. Hong, A. di, K.M. Tsang, X. Gao, S. An, M. Mittal, S.M. Vogel, E.A. Miao, J. Rehman, and A.B. Malik. 2017. Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury. J Clin Invest 127 (11): 4124–4135.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Lamkanfi, M. 2011. Emerging inflammasome effector mechanisms. Nat Rev Immunol 11 (3): 213–220.PubMedCrossRef Lamkanfi, M. 2011. Emerging inflammasome effector mechanisms. Nat Rev Immunol 11 (3): 213–220.PubMedCrossRef
49.
Zurück zum Zitat Kim, S.R., D.I. Kim, S.H. Kim, H. Lee, K.S. Lee, S.H. Cho, and Y.C. Lee. 2014. NLRP3 inflammasome activation by mitochondrial ROS in bronchial epithelial cells is required for allergic inflammation. Cell Death Dis 5: e1498.PubMedPubMedCentralCrossRef Kim, S.R., D.I. Kim, S.H. Kim, H. Lee, K.S. Lee, S.H. Cho, and Y.C. Lee. 2014. NLRP3 inflammasome activation by mitochondrial ROS in bronchial epithelial cells is required for allergic inflammation. Cell Death Dis 5: e1498.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Guo, M., F. An, H. Yu, X. Wei, M. Hong, and Y. Lu. 2017. Comparative effects of schisandrin A, B, and C on Propionibacterium acnes-induced, NLRP3 inflammasome activation-mediated IL-1beta secretion and pyroptosis. Biomed Pharmacother 96: 129–136.PubMedCrossRef Guo, M., F. An, H. Yu, X. Wei, M. Hong, and Y. Lu. 2017. Comparative effects of schisandrin A, B, and C on Propionibacterium acnes-induced, NLRP3 inflammasome activation-mediated IL-1beta secretion and pyroptosis. Biomed Pharmacother 96: 129–136.PubMedCrossRef
51.
Zurück zum Zitat Herbert, C., M. Sebesfi, Q.X. Zeng, B.G. Oliver, P.S. Foster, and R.K. Kumar. 2015. Using multiple online databases to help identify microRNAs regulating the airway epithelial cell response to a virus-like stimulus. Respirology 20 (8): 1206–1212.PubMedCrossRef Herbert, C., M. Sebesfi, Q.X. Zeng, B.G. Oliver, P.S. Foster, and R.K. Kumar. 2015. Using multiple online databases to help identify microRNAs regulating the airway epithelial cell response to a virus-like stimulus. Respirology 20 (8): 1206–1212.PubMedCrossRef
52.
Zurück zum Zitat Li, N., Y. He, and M.C. Li. 2015. Role of transient receptor potential canonical 1 in airway remodeling and effect of budesonide on its pulmonary expression in asthmatic guinea pigs. Nan Fang Yi Ke Da Xue Xue Bao 35 (10): 1374–1379.PubMed Li, N., Y. He, and M.C. Li. 2015. Role of transient receptor potential canonical 1 in airway remodeling and effect of budesonide on its pulmonary expression in asthmatic guinea pigs. Nan Fang Yi Ke Da Xue Xue Bao 35 (10): 1374–1379.PubMed
53.
Zurück zum Zitat Li, N., Y. He, G. Yang, Q. Yu, and M. Li. 2019. Role of TRPC1 channels in pressure-mediated activation of airway remodeling. Respir Res 20 (1): 91.PubMedPubMedCentralCrossRef Li, N., Y. He, G. Yang, Q. Yu, and M. Li. 2019. Role of TRPC1 channels in pressure-mediated activation of airway remodeling. Respir Res 20 (1): 91.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Chang, J., J. Gao, L. Lou, H. Chu, P. Li, T. Chen, and F. Gao. 2020. Xanthatin alleviates airway inflammation in asthmatic mice by regulating the STAT3/NF-kappaB signaling pathway. Respir Physiol Neurobiol 281: 103491.PubMedCrossRef Chang, J., J. Gao, L. Lou, H. Chu, P. Li, T. Chen, and F. Gao. 2020. Xanthatin alleviates airway inflammation in asthmatic mice by regulating the STAT3/NF-kappaB signaling pathway. Respir Physiol Neurobiol 281: 103491.PubMedCrossRef
Metadaten
Titel
Schisandrin B Attenuates Airway Inflammation and Airway Remodeling in Asthma by Inhibiting NLRP3 Inflammasome Activation and Reducing Pyroptosis
verfasst von
Xiufeng Chen
Zhen Xiao
Zhiyan Jiang
Yonghong Jiang
Wen Li
Mingjing Wang
Publikationsdatum
18.06.2021
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 6/2021
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-021-01494-z

Weitere Artikel der Ausgabe 6/2021

Inflammation 6/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.