Skip to main content
Erschienen in: Current Cardiology Reports 4/2022

02.02.2022 | Nuclear Cardiology (V Dilsizian, Section Editor)

Strategies for Imaging Metabolic Remodeling of the Heart in Obesity and Heart Failure

verfasst von: Amier Haidar, Heinrich Taegtmeyer

Erschienen in: Current Cardiology Reports | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

Define early myocardial metabolic changes among patients with obesity and heart failure, and to describe noninvasive methods and their applications for imaging cardiac metabolic remodeling.

Recent Findings

Metabolic remodeling precedes, triggers, and sustains functional and structural remodeling in the stressed heart. Alterations in cardiac metabolism can be assessed by using a variety of molecular probes. The glucose tracer analog, 18F-FDG, and the labeled tracer 11C-palmitate are still the most commonly used tracers to assess glucose and fatty acid metabolism, respectively. The development of new tracer analogs and imaging agents, including those targeting the peroxisome proliferator-activated receptor (PPAR), provides new opportunities for imaging metabolic activities at a molecular level. While the use of cardiac magnetic resonance spectroscopy in the clinical setting is limited to the assessment of intramyocardial and epicardial fat, new technical improvements are likely to increase its usage in the setting of heart failure.

Summary

Noninvasive imaging methods are an effective tool for the serial assessment of alterations in cardiac metabolism, either during disease progression, or in response to treatment.
Literatur
1.
Zurück zum Zitat Groenewegen A, Rutten FH, Mosterd A, Hoes AW. Epidemiology of heart failure. Eur J Heart Fail. 2020;22(8):1342–56.PubMedCrossRef Groenewegen A, Rutten FH, Mosterd A, Hoes AW. Epidemiology of heart failure. Eur J Heart Fail. 2020;22(8):1342–56.PubMedCrossRef
2.
Zurück zum Zitat Lopaschuk GD, Ussher JR. Evolving concepts of myocardial energy metabolism: more than just fats and carbohydrates. Circ Res. 2016;119(11):1173–6.PubMedCrossRef Lopaschuk GD, Ussher JR. Evolving concepts of myocardial energy metabolism: more than just fats and carbohydrates. Circ Res. 2016;119(11):1173–6.PubMedCrossRef
3.
Zurück zum Zitat Taegtmeyer H, Young ME, Lopaschuk GD, Abel ED, Brunengraber H, Darley-Usmar V, Des Rosiers C, Gerszten R, Glatz JF, Griffin JL. Assessing cardiac metabolism: a scientific statement from the American Heart Association. Circ Res. 2016;118(10):1659–701.PubMedPubMedCentralCrossRef Taegtmeyer H, Young ME, Lopaschuk GD, Abel ED, Brunengraber H, Darley-Usmar V, Des Rosiers C, Gerszten R, Glatz JF, Griffin JL. Assessing cardiac metabolism: a scientific statement from the American Heart Association. Circ Res. 2016;118(10):1659–701.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Taegtmeyer H. Carbohydrate interconversions and energy production. Circulation. 1985;72(5 Pt 2):IV1–8. Taegtmeyer H. Carbohydrate interconversions and energy production. Circulation. 1985;72(5 Pt 2):IV1–8.
6.
Zurück zum Zitat • Glatz JF, Nabben M, Young ME, Schulze PC, Taegtmeyer H, Luiken JJ. Re-balancing cellular energy substrate metabolism to mend the failing heart. Biochim Biophys Acta Mol Basis Dis. 2020;1866(5):165579. Overview of myocardial substrate utilization in cardiac dysfunction. • Glatz JF, Nabben M, Young ME, Schulze PC, Taegtmeyer H, Luiken JJ. Re-balancing cellular energy substrate metabolism to mend the failing heart. Biochim Biophys Acta Mol Basis Dis. 2020;1866(5):165579. Overview of myocardial substrate utilization in cardiac dysfunction.
7.
Zurück zum Zitat Taegtmeyer H, Golfman L, Sharma S, Razeghi P, van Arsdall M. Linking gene expression to function: metabolic flexibility in the normal and diseased heart. Ann N Y Acad Sci. 2004;1015(1):202–13.PubMedCrossRef Taegtmeyer H, Golfman L, Sharma S, Razeghi P, van Arsdall M. Linking gene expression to function: metabolic flexibility in the normal and diseased heart. Ann N Y Acad Sci. 2004;1015(1):202–13.PubMedCrossRef
8.
Zurück zum Zitat Taegtmeyer H, Dilsizian V. Imaging myocardial metabolism and ischemic memory. Nat Clin Pract Cardiovasc Med. 2008;5(2):S42–8.PubMedCrossRef Taegtmeyer H, Dilsizian V. Imaging myocardial metabolism and ischemic memory. Nat Clin Pract Cardiovasc Med. 2008;5(2):S42–8.PubMedCrossRef
9.
Zurück zum Zitat Kundu BK, Zhong M, Sen S, Davogustto G, Keller SR, Taegtmeyer H. Remodeling of glucose metabolism precedes pressure overload-induced left ventricular hypertrophy: review of a hypothesis. Cardiology. 2015;130(4):211–20.PubMedCrossRef Kundu BK, Zhong M, Sen S, Davogustto G, Keller SR, Taegtmeyer H. Remodeling of glucose metabolism precedes pressure overload-induced left ventricular hypertrophy: review of a hypothesis. Cardiology. 2015;130(4):211–20.PubMedCrossRef
10.
11.
Zurück zum Zitat Rider O, Cox P, Tyler D, Clarke K, Neubauer S. Myocardial substrate metabolism in obesity. Int J Obes. 2013;37(7):972–9.CrossRef Rider O, Cox P, Tyler D, Clarke K, Neubauer S. Myocardial substrate metabolism in obesity. Int J Obes. 2013;37(7):972–9.CrossRef
12.
Zurück zum Zitat • Piché M, Poirier P. Obesity, ectopic fat and cardiac metabolism. Expert Rev Endocrinol Metab. 2018;13(4):213-221. Examines how metabolic alterations in obesity and ectopic cardiac fat accumulation translate into cardiac energy metabolism disturbances that may lead to adverse effects on the cardiovascular system. • Piché M, Poirier P. Obesity, ectopic fat and cardiac metabolism. Expert Rev Endocrinol Metab. 2018;13(4):213-221. Examines how metabolic alterations in obesity and ectopic cardiac fat accumulation translate into cardiac energy metabolism disturbances that may lead to adverse effects on the cardiovascular system.
13.
Zurück zum Zitat Harmancey R, Wilson CR, Taegtmeyer H. Adaptation and maladaptation of the heart in obesity. Hypertension. 2008;52(2):181–7.PubMedCrossRef Harmancey R, Wilson CR, Taegtmeyer H. Adaptation and maladaptation of the heart in obesity. Hypertension. 2008;52(2):181–7.PubMedCrossRef
14.
Zurück zum Zitat Taegtmeyer H, McNulty P, Young ME. Adaptation and maladaptation of the heart in diabetes: part I: general concepts. Circulation. 2002;105(14):1727–33.PubMedCrossRef Taegtmeyer H, McNulty P, Young ME. Adaptation and maladaptation of the heart in diabetes: part I: general concepts. Circulation. 2002;105(14):1727–33.PubMedCrossRef
15.
Zurück zum Zitat Young ME, McNulty P, Taegtmeyer H. Adaptation and maladaptation of the heart in diabetes: part II: potential mechanisms. Circulation. 2002;105(15):1861–70.PubMedCrossRef Young ME, McNulty P, Taegtmeyer H. Adaptation and maladaptation of the heart in diabetes: part II: potential mechanisms. Circulation. 2002;105(15):1861–70.PubMedCrossRef
16.
Zurück zum Zitat Curley D, Plaza BL, Shah AM, Botnar RM. Molecular imaging of cardiac remodelling after myocardial infarction. Basic Res Cardiol. 2018;113(2):1–18.CrossRef Curley D, Plaza BL, Shah AM, Botnar RM. Molecular imaging of cardiac remodelling after myocardial infarction. Basic Res Cardiol. 2018;113(2):1–18.CrossRef
17.
Zurück zum Zitat Gropler RJ, Beanlands RS, Dilsizian V, Lewandowski ED, Villanueva FS, Ziadi MC. Imaging myocardial metabolic remodeling. J Nucl Med. 2010;51(Suppl 1):88S-101S.PubMedCrossRef Gropler RJ, Beanlands RS, Dilsizian V, Lewandowski ED, Villanueva FS, Ziadi MC. Imaging myocardial metabolic remodeling. J Nucl Med. 2010;51(Suppl 1):88S-101S.PubMedCrossRef
18.
Zurück zum Zitat Osterholt M, Sen S, Dilsizian V, Taegtmeyer H. Targeted metabolic imaging to improve the management of heart disease. JACC: Cardiovascular Imaging. 2012;5(2):214–226. Osterholt M, Sen S, Dilsizian V, Taegtmeyer H. Targeted metabolic imaging to improve the management of heart disease. JACC: Cardiovascular Imaging. 2012;5(2):214–226.
19.
Zurück zum Zitat Gewirtz H, Dilsizian V. Myocardial viability: survival mechanisms and molecular imaging targets in acute and chronic ischemia. Circ Res. 2017;120(7):1197–212.PubMedCrossRef Gewirtz H, Dilsizian V. Myocardial viability: survival mechanisms and molecular imaging targets in acute and chronic ischemia. Circ Res. 2017;120(7):1197–212.PubMedCrossRef
20.
Zurück zum Zitat Alpert MA, Karthikeyan K, Abdullah O, Ghadban R. Obesity and cardiac remodeling in adults: mechanisms and clinical implications. Prog Cardiovasc Dis. 2018;61(2):114–23.PubMedCrossRef Alpert MA, Karthikeyan K, Abdullah O, Ghadban R. Obesity and cardiac remodeling in adults: mechanisms and clinical implications. Prog Cardiovasc Dis. 2018;61(2):114–23.PubMedCrossRef
21.
Zurück zum Zitat • Koutroumpakis E, Jozwik B, Aguilar D, Taegtmeyer H. Strategies of unloading the failing heart from metabolic stress. Am J Med. 2020;133(3):290-296. Summary of current knowledge on the pathophysiology of non-ischemic heart failure in the state of metabolic dysregulation. • Koutroumpakis E, Jozwik B, Aguilar D, Taegtmeyer H. Strategies of unloading the failing heart from metabolic stress. Am J Med. 2020;133(3):290-296. Summary of current knowledge on the pathophysiology of non-ischemic heart failure in the state of metabolic dysregulation.
22.
23.
Zurück zum Zitat Leichman JG, Aguilar D, King TM, Vlada A, Reyes M, Taegtmeyer H. Association of plasma free fatty acids and left ventricular diastolic function in patients with clinically severe obesity. Am J Clin Nutr. 2006;84(2):336–41.PubMedCrossRef Leichman JG, Aguilar D, King TM, Vlada A, Reyes M, Taegtmeyer H. Association of plasma free fatty acids and left ventricular diastolic function in patients with clinically severe obesity. Am J Clin Nutr. 2006;84(2):336–41.PubMedCrossRef
24.
Zurück zum Zitat Mahajan R, Lau DH, Sanders P. Impact of obesity on cardiac metabolism, fibrosis, and function. Trends Cardiovasc Med. 2015;25(2):119–26.PubMedCrossRef Mahajan R, Lau DH, Sanders P. Impact of obesity on cardiac metabolism, fibrosis, and function. Trends Cardiovasc Med. 2015;25(2):119–26.PubMedCrossRef
25.
Zurück zum Zitat Sharma S, Adrogue JV, Golfman L, Uray I, Lemm J, Youker K, Noon GP, Frazier O, Taegtmeyer H. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J. 2004;18(14):1692–700.PubMedCrossRef Sharma S, Adrogue JV, Golfman L, Uray I, Lemm J, Youker K, Noon GP, Frazier O, Taegtmeyer H. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J. 2004;18(14):1692–700.PubMedCrossRef
26.
Zurück zum Zitat Corica D, Oreto L, Pepe G, Calabrò MP, Longobardo L, Morabito L, Pajno GB, Alibrandi A, Aversa T, Wasniewska M. Precocious preclinical cardiovascular sonographic markers in metabolically healthy and unhealthy childhood obesity. Front Endocrinol. 2020;11:56.CrossRef Corica D, Oreto L, Pepe G, Calabrò MP, Longobardo L, Morabito L, Pajno GB, Alibrandi A, Aversa T, Wasniewska M. Precocious preclinical cardiovascular sonographic markers in metabolically healthy and unhealthy childhood obesity. Front Endocrinol. 2020;11:56.CrossRef
27.
Zurück zum Zitat Madigan Jr., MJ, Racette SB, Coggan AR, Stein RI, McCue LM, Gropler RJ, Peterson LR. Weight loss affects intramyocardial glucose metabolism in obese humans. Circ Cardiovasc Imaging. 2019;12(8):e009241. Madigan Jr., MJ, Racette SB, Coggan AR, Stein RI, McCue LM, Gropler RJ, Peterson LR. Weight loss affects intramyocardial glucose metabolism in obese humans. Circ Cardiovasc Imaging. 2019;12(8):e009241.
28.
Zurück zum Zitat Kosmala W, Sanders P, Marwick TH. Subclinical myocardial impairment in metabolic diseases. JACC Cardiovasc Imaging. 2017;10(6):692–703.PubMedCrossRef Kosmala W, Sanders P, Marwick TH. Subclinical myocardial impairment in metabolic diseases. JACC Cardiovasc Imaging. 2017;10(6):692–703.PubMedCrossRef
29.
Zurück zum Zitat Lin CH, Kurup S, Herrero P, Schechtman KB, Eagon JC, Klein S, Dávila-Román VG, Stein RI, Dorn-II GW, Gropler RJ. Myocardial oxygen consumption change predicts left ventricular relaxation improvement in obese humans after weight loss. Obesity. 2011;19(9):1804–12.PubMedCrossRef Lin CH, Kurup S, Herrero P, Schechtman KB, Eagon JC, Klein S, Dávila-Román VG, Stein RI, Dorn-II GW, Gropler RJ. Myocardial oxygen consumption change predicts left ventricular relaxation improvement in obese humans after weight loss. Obesity. 2011;19(9):1804–12.PubMedCrossRef
30.
Zurück zum Zitat Leichman JG, Wilson EB, Scarborough T, Aguilar D, Miller CC III, Yu S, Algahim MF, Reyes M, Moody FG, Taegtmeyer H. Dramatic reversal of derangements in muscle metabolism and left ventricular function after bariatric surgery. Am J Med. 2008;121(11):966–73.PubMedPubMedCentralCrossRef Leichman JG, Wilson EB, Scarborough T, Aguilar D, Miller CC III, Yu S, Algahim MF, Reyes M, Moody FG, Taegtmeyer H. Dramatic reversal of derangements in muscle metabolism and left ventricular function after bariatric surgery. Am J Med. 2008;121(11):966–73.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Thomas SY, Harmancey R, Taegtmeyer H. Fat around the heart. JACC Cardiovasc Imaging. 2010;3(7):786–7.PubMedCrossRef Thomas SY, Harmancey R, Taegtmeyer H. Fat around the heart. JACC Cardiovasc Imaging. 2010;3(7):786–7.PubMedCrossRef
32.
Zurück zum Zitat Iacobellis G. Epicardial and pericardial fat: close, but very different. Obesity. 2009;17(4):626.CrossRef Iacobellis G. Epicardial and pericardial fat: close, but very different. Obesity. 2009;17(4):626.CrossRef
33.
Zurück zum Zitat Ferrara D, Montecucco F, Dallegri F, Carbone F. Impact of different ectopic fat depots on cardiovascular and metabolic diseases. J Cell Physiol. 2019;234(12):21630–41.PubMedCrossRef Ferrara D, Montecucco F, Dallegri F, Carbone F. Impact of different ectopic fat depots on cardiovascular and metabolic diseases. J Cell Physiol. 2019;234(12):21630–41.PubMedCrossRef
34.
Zurück zum Zitat Rabkin S. Epicardial fat: properties, function and relationship to obesity. Obes Rev. 2007;8(3):253–61.PubMedCrossRef Rabkin S. Epicardial fat: properties, function and relationship to obesity. Obes Rev. 2007;8(3):253–61.PubMedCrossRef
35.
Zurück zum Zitat Iacobellis G. Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nat Rev Endocrinol. 2015;11(6):363–71.CrossRef Iacobellis G. Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nat Rev Endocrinol. 2015;11(6):363–71.CrossRef
36.
Zurück zum Zitat Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med. 2005;2(10):536–43.PubMedCrossRef Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med. 2005;2(10):536–43.PubMedCrossRef
37.
Zurück zum Zitat Algahim MF, Lux TR, Leichman JG, Boyer AF, Miller CC III, Laing ST, Wilson EB, Scarborough T, Yu S, Snyder B. Progressive regression of left ventricular hypertrophy two years after bariatric surgery. Am J Med. 2010;123(6):549–55.PubMedPubMedCentralCrossRef Algahim MF, Lux TR, Leichman JG, Boyer AF, Miller CC III, Laing ST, Wilson EB, Scarborough T, Yu S, Snyder B. Progressive regression of left ventricular hypertrophy two years after bariatric surgery. Am J Med. 2010;123(6):549–55.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Algahim MF, Sen S, Taegtmeyer H. Bariatric surgery to unload the stressed heart: a metabolic hypothesis. American Journal of Physiology-Heart and Circulatory Physiology. 2012;302(8):H1539–45.PubMedPubMedCentralCrossRef Algahim MF, Sen S, Taegtmeyer H. Bariatric surgery to unload the stressed heart: a metabolic hypothesis. American Journal of Physiology-Heart and Circulatory Physiology. 2012;302(8):H1539–45.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Tuunanen H, Knuuti J. Metabolic remodelling in human heart failure. Cardiovasc Res. 2011;90(2):251–7.PubMedCrossRef Tuunanen H, Knuuti J. Metabolic remodelling in human heart failure. Cardiovasc Res. 2011;90(2):251–7.PubMedCrossRef
40.
Zurück zum Zitat Lopaschuk GD, Karwi QG, Tian R, Wende AR, Abel ED. Cardiac energy metabolism in heart failure. Circ Res. 2021;128(10):1487–513.PubMedCrossRef Lopaschuk GD, Karwi QG, Tian R, Wende AR, Abel ED. Cardiac energy metabolism in heart failure. Circ Res. 2021;128(10):1487–513.PubMedCrossRef
42.
Zurück zum Zitat Kolwicz SC Jr, Airhart S, Tian R. Ketones step to the plate: a game changer for metabolic remodeling in heart failure? Circulation. 2016;133(8):689–91.PubMedPubMedCentralCrossRef Kolwicz SC Jr, Airhart S, Tian R. Ketones step to the plate: a game changer for metabolic remodeling in heart failure? Circulation. 2016;133(8):689–91.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Kadkhodayan A, Coggan AR, Peterson LR. A “PET” area of interest: myocardial metabolism in human systolic heart failure. Heart Fail Rev. 2013;18(5):567–74.PubMedPubMedCentralCrossRef Kadkhodayan A, Coggan AR, Peterson LR. A “PET” area of interest: myocardial metabolism in human systolic heart failure. Heart Fail Rev. 2013;18(5):567–74.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Kadkhodayan A, Lin CH, Coggan AR, Kisrieva-Ware Z, Schechtman KB, Novak E, Joseph SM, Dávila-Román VG, Gropler RJ, Dence C. Sex affects myocardial blood flow and fatty acid substrate metabolism in humans with nonischemic heart failure. J Nucl Cardiol. 2017;24(4):1226–35.PubMedCrossRef Kadkhodayan A, Lin CH, Coggan AR, Kisrieva-Ware Z, Schechtman KB, Novak E, Joseph SM, Dávila-Román VG, Gropler RJ, Dence C. Sex affects myocardial blood flow and fatty acid substrate metabolism in humans with nonischemic heart failure. J Nucl Cardiol. 2017;24(4):1226–35.PubMedCrossRef
46.
Zurück zum Zitat Taegtmeyer H. Tracing cardiac metabolism in vivo: one substrate at a time. J Nucl Med. 2010;51(Suppl 1):80S-87S.PubMedCrossRef Taegtmeyer H. Tracing cardiac metabolism in vivo: one substrate at a time. J Nucl Med. 2010;51(Suppl 1):80S-87S.PubMedCrossRef
47.
Zurück zum Zitat Olson RE. Myocardial metabolism in congestive heart failure. J Chronic Dis. 1959;9(5):442–64.PubMedCrossRef Olson RE. Myocardial metabolism in congestive heart failure. J Chronic Dis. 1959;9(5):442–64.PubMedCrossRef
48.
Zurück zum Zitat Herrero P, Gropler RJ. Imaging of myocardial metabolism. J Nucl Cardiol. 2005;12(3):345–58.PubMedCrossRef Herrero P, Gropler RJ. Imaging of myocardial metabolism. J Nucl Cardiol. 2005;12(3):345–58.PubMedCrossRef
49.
Zurück zum Zitat Peterson LR, Gropler RJ. Radionuclide imaging of myocardial metabolism. Circ Cardiovasc Imaging. 2010;3(2):211–22.PubMedCrossRef Peterson LR, Gropler RJ. Radionuclide imaging of myocardial metabolism. Circ Cardiovasc Imaging. 2010;3(2):211–22.PubMedCrossRef
50.
Zurück zum Zitat Rider OJ, Tyler DJ. Clinical implications of cardiac hyperpolarized magnetic resonance imaging. J Cardiovasc Magn Reson. 2013;15(1):1–9.CrossRef Rider OJ, Tyler DJ. Clinical implications of cardiac hyperpolarized magnetic resonance imaging. J Cardiovasc Magn Reson. 2013;15(1):1–9.CrossRef
51.
Zurück zum Zitat van Ewijk PA, Schrauwen-Hinderling VB, Bekkers SC, Glatz JF, Wildberger JE, Kooi ME. MRS: a noninvasive window into cardiac metabolism. NMR Biomed. 2015;28(7):747–66.PubMedCrossRef van Ewijk PA, Schrauwen-Hinderling VB, Bekkers SC, Glatz JF, Wildberger JE, Kooi ME. MRS: a noninvasive window into cardiac metabolism. NMR Biomed. 2015;28(7):747–66.PubMedCrossRef
52.
Zurück zum Zitat • Dellegrottaglie S, Scatteia A, Pascale CE, Renga F, Perrone-Filardi P. Evaluation of cardiac metabolism by magnetic resonance spectroscopy in heart failure. Heart Fail Clin. 2019;15(3):421-433. Comprehensive overview of cardiac magnetic resonance spectroscopy use to assess metabolic changes in heart failure. • Dellegrottaglie S, Scatteia A, Pascale CE, Renga F, Perrone-Filardi P. Evaluation of cardiac metabolism by magnetic resonance spectroscopy in heart failure. Heart Fail Clin. 2019;15(3):421-433. Comprehensive overview of cardiac magnetic resonance spectroscopy use to assess metabolic changes in heart failure.
53.
Zurück zum Zitat Shirani J, Singh A, Agrawal S, Dilsizian V. Cardiac molecular imaging to track left ventricular remodeling in heart failure. J Nucl Cardiol. 2017;24(2):574–90.PubMedCrossRef Shirani J, Singh A, Agrawal S, Dilsizian V. Cardiac molecular imaging to track left ventricular remodeling in heart failure. J Nucl Cardiol. 2017;24(2):574–90.PubMedCrossRef
54.
Zurück zum Zitat •• Li J, Kemp BA, Howell NL, Massey J, Mińczuk K, Huang Q, Chordia MD, Roy RJ, Patrie JT, Davogustto GE. Metabolic changes in spontaneously hypertensive rat hearts precede cardiac dysfunction and left ventricular hypertrophy. J Am Heart Assoc. 2019;8(4):e010926. In the stressed heart, metabolic remodeling precedes, triggers, and sustains functional and structural remodeling. •• Li J, Kemp BA, Howell NL, Massey J, Mińczuk K, Huang Q, Chordia MD, Roy RJ, Patrie JT, Davogustto GE. Metabolic changes in spontaneously hypertensive rat hearts precede cardiac dysfunction and left ventricular hypertrophy. J Am Heart Assoc. 2019;8(4):e010926. In the stressed heart, metabolic remodeling precedes, triggers, and sustains functional and structural remodeling.
55.
Zurück zum Zitat Hamirani YS, Kundu BK, Zhong M, McBride A, Li Y, Davogustto GE, Taegtmeyer H, Bourque JM. Noninvasive detection of early metabolic left ventricular remodeling in systemic hypertension. Cardiology. 2016;133(3):157–62.PubMedCrossRef Hamirani YS, Kundu BK, Zhong M, McBride A, Li Y, Davogustto GE, Taegtmeyer H, Bourque JM. Noninvasive detection of early metabolic left ventricular remodeling in systemic hypertension. Cardiology. 2016;133(3):157–62.PubMedCrossRef
56.
Zurück zum Zitat Zhong M, Alonso CE, Taegtmeyer H, Kundu BK. Quantitative PET imaging detects early metabolic remodeling in a mouse model of pressure-overload left ventricular hypertrophy in vivo. J Nucl Med. 2013;54(4):609–15.PubMedCrossRef Zhong M, Alonso CE, Taegtmeyer H, Kundu BK. Quantitative PET imaging detects early metabolic remodeling in a mouse model of pressure-overload left ventricular hypertrophy in vivo. J Nucl Med. 2013;54(4):609–15.PubMedCrossRef
57.
Zurück zum Zitat •• Li J, Minćzuk K, Massey JC, Howell NL, Roy RJ, Paul S, Patrie JT, Kramer CM, Epstein FH, Carey RM. Metformin improves cardiac metabolism and function, and prevents left ventricular hypertrophy in spontaneously hypertensive rats. J Am Heart Assoc. 2020;9(7):e015154. Metformin ameliorates cardiac metabolic abnormalities that develop in response to chronic pressure overload and thereby lessen hypertension induced LVH, even in patients without diabetes. •• Li J, Minćzuk K, Massey JC, Howell NL, Roy RJ, Paul S, Patrie JT, Kramer CM, Epstein FH, Carey RM. Metformin improves cardiac metabolism and function, and prevents left ventricular hypertrophy in spontaneously hypertensive rats. J Am Heart Assoc. 2020;9(7):e015154. Metformin ameliorates cardiac metabolic abnormalities that develop in response to chronic pressure overload and thereby lessen hypertension induced LVH, even in patients without diabetes.
58.
Zurück zum Zitat Khalaf S, Chamsi-Pasha M, Al-Mallah MH. Assessment of myocardial viability by PET. Curr Opin Cardiol. 2019;34(5):466–72.PubMedCrossRef Khalaf S, Chamsi-Pasha M, Al-Mallah MH. Assessment of myocardial viability by PET. Curr Opin Cardiol. 2019;34(5):466–72.PubMedCrossRef
59.
Zurück zum Zitat Kloner RA. Stunned and hibernating myocardium: where are we nearly 4 decades later? J Am Heart Assoc. 2020;9(3):e015502. Kloner RA. Stunned and hibernating myocardium: where are we nearly 4 decades later? J Am Heart Assoc. 2020;9(3):e015502.
60.
Zurück zum Zitat Ryan MJ, Perera D. Identifying and managing hibernating myocardium: what’s new and what remains unknown? Curr Heart Fail Rep. 2018;15(4):214–23.PubMedPubMedCentralCrossRef Ryan MJ, Perera D. Identifying and managing hibernating myocardium: what’s new and what remains unknown? Curr Heart Fail Rep. 2018;15(4):214–23.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Panza JA, Chrzanowski L, Bonow RO. Myocardial viability assessment before surgical revascularization in ischemic cardiomyopathy: JACC review topic of the week. J Am Coll Cardiol. 2021;78(10):1068–77.PubMedCrossRef Panza JA, Chrzanowski L, Bonow RO. Myocardial viability assessment before surgical revascularization in ischemic cardiomyopathy: JACC review topic of the week. J Am Coll Cardiol. 2021;78(10):1068–77.PubMedCrossRef
62.
Zurück zum Zitat Mather KJ, DeGrado TR. Imaging of myocardial fatty acid oxidation. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2016;1861(10):1535–1543. Mather KJ, DeGrado TR. Imaging of myocardial fatty acid oxidation. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2016;1861(10):1535–1543.
63.
Zurück zum Zitat Ylä-Herttuala E, Saraste A, Knuuti J, Liimatainen T, Ylä-Herttuala S. Molecular imaging to monitor left ventricular remodeling in heart failure. Curr Cardiovasc Imaging Rep. 2019;12(4):1–13.CrossRef Ylä-Herttuala E, Saraste A, Knuuti J, Liimatainen T, Ylä-Herttuala S. Molecular imaging to monitor left ventricular remodeling in heart failure. Curr Cardiovasc Imaging Rep. 2019;12(4):1–13.CrossRef
64.
Zurück zum Zitat • Apps A, Lau J, Peterzan M, Neubauer S, Tyler D, Rider O. Hyperpolarised magnetic resonance for in vivo real-time metabolic imaging. Heart. 2018;104(18):1484-91. Opportunities and limitations of a novel approach to assess cardiac metabolism. • Apps A, Lau J, Peterzan M, Neubauer S, Tyler D, Rider O. Hyperpolarised magnetic resonance for in vivo real-time metabolic imaging. Heart. 2018;104(18):1484-91. Opportunities and limitations of a novel approach to assess cardiac metabolism.
65.
Zurück zum Zitat Cunningham CH, Lau JY, Chen AP, Geraghty BJ, Perks WJ, Roifman I, Wright GA, Connelly KA. Hyperpolarized 13C metabolic MRI of the human heart: initial experience. Circ Res. 2016;119(11):1177–82.PubMedPubMedCentralCrossRef Cunningham CH, Lau JY, Chen AP, Geraghty BJ, Perks WJ, Roifman I, Wright GA, Connelly KA. Hyperpolarized 13C metabolic MRI of the human heart: initial experience. Circ Res. 2016;119(11):1177–82.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Ng AC, Delgado V, Borlaug BA, Bax JJ. Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging. Nat Rev Cardiol. 2021;18(4):291–304.PubMedCrossRef Ng AC, Delgado V, Borlaug BA, Bax JJ. Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging. Nat Rev Cardiol. 2021;18(4):291–304.PubMedCrossRef
67.
Zurück zum Zitat Davidovich D, Gastaldelli A, Sicari R. Imaging cardiac fat. Eur Heart J Cardiovasc Imaging. 2013;14(7):625–30.PubMedCrossRef Davidovich D, Gastaldelli A, Sicari R. Imaging cardiac fat. Eur Heart J Cardiovasc Imaging. 2013;14(7):625–30.PubMedCrossRef
68.
Zurück zum Zitat McGavock JM, Victor RG, Unger RH, Szczepaniak LS. Adiposity of the heart*, revisited. Ann Intern Med. 2006;144(7):517–24.PubMedCrossRef McGavock JM, Victor RG, Unger RH, Szczepaniak LS. Adiposity of the heart*, revisited. Ann Intern Med. 2006;144(7):517–24.PubMedCrossRef
69.
Zurück zum Zitat Szczepaniak LS, Victor RG, Orci L, Unger RH. Forgotten but not gone: the rediscovery of fatty heart, the most common unrecognized disease in America. Circ Res. 2007;101(8):759–67.PubMedCrossRef Szczepaniak LS, Victor RG, Orci L, Unger RH. Forgotten but not gone: the rediscovery of fatty heart, the most common unrecognized disease in America. Circ Res. 2007;101(8):759–67.PubMedCrossRef
70.
Zurück zum Zitat Jing L, Binkley CM, Suever JD, Umasankar N, Haggerty CM, Rich J, Nevius CD, Wehner GJ, Hamlet SM, Powell DK. Cardiac remodeling and dysfunction in childhood obesity: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson. 2016;18(1):1–12.CrossRef Jing L, Binkley CM, Suever JD, Umasankar N, Haggerty CM, Rich J, Nevius CD, Wehner GJ, Hamlet SM, Powell DK. Cardiac remodeling and dysfunction in childhood obesity: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson. 2016;18(1):1–12.CrossRef
71.
Zurück zum Zitat • Peterson LR, Gropler RJ. Metabolic and molecular imaging of the diabetic cardiomyopathy. Circ Res. 2020;126(11):1628-1645. Comprehensive review on non-invasive metabolic imaging methods in patients with diabetes. • Peterson LR, Gropler RJ. Metabolic and molecular imaging of the diabetic cardiomyopathy. Circ Res. 2020;126(11):1628-1645. Comprehensive review on non-invasive metabolic imaging methods in patients with diabetes.
72.
Zurück zum Zitat Barton GP, Vildberg L, Goss K, Aggarwal N, Eldridge M, McMillan AB. Simultaneous determination of dynamic cardiac metabolism and function using PET/MRI. J Nucl Cardiol. 2019;26(6):1946–57.PubMedCrossRef Barton GP, Vildberg L, Goss K, Aggarwal N, Eldridge M, McMillan AB. Simultaneous determination of dynamic cardiac metabolism and function using PET/MRI. J Nucl Cardiol. 2019;26(6):1946–57.PubMedCrossRef
73.
Zurück zum Zitat Schoenheimer R. The dynamic state of body constituents. 1942; Cambridge MA, Harvard University Press, 78pp. Schoenheimer R. The dynamic state of body constituents. 1942; Cambridge MA, Harvard University Press, 78pp.
Metadaten
Titel
Strategies for Imaging Metabolic Remodeling of the Heart in Obesity and Heart Failure
verfasst von
Amier Haidar
Heinrich Taegtmeyer
Publikationsdatum
02.02.2022
Verlag
Springer US
Erschienen in
Current Cardiology Reports / Ausgabe 4/2022
Print ISSN: 1523-3782
Elektronische ISSN: 1534-3170
DOI
https://doi.org/10.1007/s11886-022-01650-3

Weitere Artikel der Ausgabe 4/2022

Current Cardiology Reports 4/2022 Zur Ausgabe

Interventional Cardiology (SR Bailey and T Helmy, Section Editors)

Vascular Closure: the ABC’s

Psychological Aspects of Cardiovascular Diseases (IM Kronish , Section Editor)

Is Sedentary Behavior a Novel Risk Factor for Cardiovascular Disease?

Congenital Heart Disease (RA Krasuski and G Fleming, Section Editors)

MRI-Guided Cardiac Catheterization in Congenital Heart Disease: How to Get Started

New Therapies for Cardiovascular Disease (AA Bavry and MR Massoomi, Section Editors)

AngioVac for Minimally Invasive Removal of Intravascular and Intracardiac Masses: a Systematic Review

Regenerative Medicine (SM Wu, Section Editor)

Mesenchymal Stromal Cell Exosomes in Cardiac Repair

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.