Skip to main content
Erschienen in: Lasers in Medical Science 3/2021

28.07.2020 | Original Article

The bactericidal efficacy of femtosecond laser-based therapy on the most common infectious bacterial pathogens in chronic wounds: an in vitro study

Erschienen in: Lasers in Medical Science | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten

Abstract

We investigated the influence of femtosecond laser irradiation on the growth of the two most common infectious bacterial pathogens in wounds; Staphylococcus aureus and Pseudomonas aeruginosa as an attempt to validate optimum parameters for a laser-based bactericidal modality to be used clinically. Bacterial cultures were exposed to femtosecond laser irradiation at different wavelengths, exposure times, and laser powers. The source of femtosecond laser was INSPIRE HF100 laser system, Spectra-Physics, which is pumped by a mode-locked femtosecond Ti: sapphire laser MAI TAI HP, Spectra-Physics. After irradiation, bacterial cells’ survival was monitored by observing the clear zones of inhibition in cultured agar plates. Results for all strains indicated that the exposure to femtosecond laser irradiation with a wavelength ranging from ultraviolet (λ > 350 nm) to blue laser light (λ < 480 nm), for a period above 20 min and with a power density of ≈ 0.063 W/cm2, was enough to inhibit both bacterial pathogens with the results maintained for 1 week following irradiation.
Literatur
1.
Zurück zum Zitat Heldin C-H, Westermark B (1988) Role of platelet-derived growth factor in vivo. Springer, The molecular and cellular biology of wound repairCrossRef Heldin C-H, Westermark B (1988) Role of platelet-derived growth factor in vivo. Springer, The molecular and cellular biology of wound repairCrossRef
2.
Zurück zum Zitat Stacey M (2016) Why don’t wounds heal?. Wounds Int. 7(1):16–21 Stacey M (2016) Why don’t wounds heal?. Wounds Int. 7(1):16–21
3.
4.
Zurück zum Zitat Fagbomedo J, Femi TO (2017) Incidence of wound infections and the prevalence of multi drug resistant Staphylococcus aureus in a Nigerian Hospital. Academia J Sci Res 5:316–322 Fagbomedo J, Femi TO (2017) Incidence of wound infections and the prevalence of multi drug resistant Staphylococcus aureus in a Nigerian Hospital. Academia J Sci Res 5:316–322
5.
Zurück zum Zitat Isibor JO, Oseni A, Eyaufe A, Turay A (2008) Incidence of aerobic bacteria and Candida albicans in postoperative wound infections. Afr J Microbiol Res 2:288–291 Isibor JO, Oseni A, Eyaufe A, Turay A (2008) Incidence of aerobic bacteria and Candida albicans in postoperative wound infections. Afr J Microbiol Res 2:288–291
6.
Zurück zum Zitat Smith RS, Iglewski BH (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6(1):56–60PubMedCrossRef Smith RS, Iglewski BH (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6(1):56–60PubMedCrossRef
7.
Zurück zum Zitat Wang J, Wu X, Wang C, Rong Z, Ding H, Li H et al (2016) Facile synthesis of Aucoated magnetic nanoparticles and their application in bacteria detection via a SERS method. ACS Appl Mater Interfaces 8(31):19958–19967PubMedCrossRef Wang J, Wu X, Wang C, Rong Z, Ding H, Li H et al (2016) Facile synthesis of Aucoated magnetic nanoparticles and their application in bacteria detection via a SERS method. ACS Appl Mater Interfaces 8(31):19958–19967PubMedCrossRef
8.
Zurück zum Zitat Anguzu J, Olila D (2007) Drug sensitivity patterns of bacterial isolates from septic postoperative wounds in a regional referral hospital in Uganda. Afr Health Sci 7 Anguzu J, Olila D (2007) Drug sensitivity patterns of bacterial isolates from septic postoperative wounds in a regional referral hospital in Uganda. Afr Health Sci 7
9.
Zurück zum Zitat Gelaw A, Gebre-Selassie S, Tiruneh M, Mathios E, Yifru S (2014) Isolation of bacterial pathogens from patients with postoperative surgical site infections and possible sources of infections at the University of Gondar Hospital, Northwest Ethiopia. J Environ Occup Sci 3:103–108CrossRef Gelaw A, Gebre-Selassie S, Tiruneh M, Mathios E, Yifru S (2014) Isolation of bacterial pathogens from patients with postoperative surgical site infections and possible sources of infections at the University of Gondar Hospital, Northwest Ethiopia. J Environ Occup Sci 3:103–108CrossRef
10.
11.
Zurück zum Zitat Luo J, Deng W, Yang F, Wu Z, Huang M, Gu M (2018) Gold nanoparticles decorated graphene oxide/nanocellulose paper for NIR laser-induced photothermal ablation of pathogenic bacteria. Carbohydr Polym 198:206–214PubMedCrossRef Luo J, Deng W, Yang F, Wu Z, Huang M, Gu M (2018) Gold nanoparticles decorated graphene oxide/nanocellulose paper for NIR laser-induced photothermal ablation of pathogenic bacteria. Carbohydr Polym 198:206–214PubMedCrossRef
13.
Zurück zum Zitat Pelfrene E et al (2016) Bacteriophage therapy: a regulatory perspective. J ntimicrob Chemother 71:2071–2074CrossRef Pelfrene E et al (2016) Bacteriophage therapy: a regulatory perspective. J ntimicrob Chemother 71:2071–2074CrossRef
15.
Zurück zum Zitat Cotter PD et al (2013) Bacteriocins – a viable alternative to antibiotics? Nat Rev Microbiol 11:95–105PubMedCrossRef Cotter PD et al (2013) Bacteriocins – a viable alternative to antibiotics? Nat Rev Microbiol 11:95–105PubMedCrossRef
16.
Zurück zum Zitat Yang SC et al (2014) Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol 5:241PubMedPubMedCentral Yang SC et al (2014) Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol 5:241PubMedPubMedCentral
18.
Zurück zum Zitat Aroniadis OC, Brandt LJ (2014) Intestinal microbiota and the efficacy of fecal microbiota transplantation in gastrointestinal disease. Gastroenterol Hepatol (N Y) 10:230–237 Aroniadis OC, Brandt LJ (2014) Intestinal microbiota and the efficacy of fecal microbiota transplantation in gastrointestinal disease. Gastroenterol Hepatol (N Y) 10:230–237
21.
Zurück zum Zitat Bebbington C, Yarranton G (2008) Antibodies for the treatment of bacterial infections: current experience and future prospects. Curr Opin Biotechnol 19:613–619PubMedCrossRef Bebbington C, Yarranton G (2008) Antibodies for the treatment of bacterial infections: current experience and future prospects. Curr Opin Biotechnol 19:613–619PubMedCrossRef
22.
24.
Zurück zum Zitat Meng J et al (2009) Novel anion liposome-encapsulated antisense oligonucleotide restores susceptibility of methicillin-resistant Staphylococcus aureus and rescues mice from lethal sepsis by targeting mecA. Antimicrob Agents Chemother 53:2871–2878PubMedPubMedCentralCrossRef Meng J et al (2009) Novel anion liposome-encapsulated antisense oligonucleotide restores susceptibility of methicillin-resistant Staphylococcus aureus and rescues mice from lethal sepsis by targeting mecA. Antimicrob Agents Chemother 53:2871–2878PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Meng J et al (2015) Reversion of antibiotic resistance by inhibiting mecA in clinical methicillin-resistant staphylococci by antisense phosphorothioate oligonucleotide. J Antibiot (Tokyo) 68:158–164CrossRef Meng J et al (2015) Reversion of antibiotic resistance by inhibiting mecA in clinical methicillin-resistant staphylococci by antisense phosphorothioate oligonucleotide. J Antibiot (Tokyo) 68:158–164CrossRef
26.
Zurück zum Zitat Chandradhish G et al (2018) Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends Microbiol 27(4) Chandradhish G et al (2018) Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends Microbiol 27(4)
28.
Zurück zum Zitat Libis VK et al (2014) Silencing of antibiotic resistance in E. coli with engineered phage bearing small regulatory RNAs. ACS Synth Biol 3:1003–1006PubMedCrossRef Libis VK et al (2014) Silencing of antibiotic resistance in E. coli with engineered phage bearing small regulatory RNAs. ACS Synth Biol 3:1003–1006PubMedCrossRef
30.
Zurück zum Zitat Schmelcher M et al (2012) Bacteriophage endolysins as novel antimicrobials. Future Microbiol 7:1147–1171PubMedCrossRef Schmelcher M et al (2012) Bacteriophage endolysins as novel antimicrobials. Future Microbiol 7:1147–1171PubMedCrossRef
31.
Zurück zum Zitat Borysowski J et al (2006) Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol Med (Maywood) 231:366–377CrossRef Borysowski J et al (2006) Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol Med (Maywood) 231:366–377CrossRef
32.
Zurück zum Zitat Rodriguez-Rubio L et al (2013) Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics. Crit Rev Microbiol 39:427–434PubMedCrossRef Rodriguez-Rubio L et al (2013) Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics. Crit Rev Microbiol 39:427–434PubMedCrossRef
33.
Zurück zum Zitat De La Fuente-Nunez C, Lu TK (2017) CRISPR-Cas9 technology: applications in genome engineering, development of sequence-specific antimicrobials, and future prospects. Integr Biol (Camb) 9:109–122CrossRef De La Fuente-Nunez C, Lu TK (2017) CRISPR-Cas9 technology: applications in genome engineering, development of sequence-specific antimicrobials, and future prospects. Integr Biol (Camb) 9:109–122CrossRef
34.
Zurück zum Zitat Bikard D, Barrangou R (2017) Using CRISPR-Cas systems as antimicrobials. Curr Opin Microbiol 37:155–160PubMedCrossRef Bikard D, Barrangou R (2017) Using CRISPR-Cas systems as antimicrobials. Curr Opin Microbiol 37:155–160PubMedCrossRef
35.
Zurück zum Zitat Kokai-Kun JF et al (2017) The oral beta-lactamase SYN-004 (Ribaxamase) degrades ceftriaxone excreted into the intestine in phase 2a clinical studies. Antimicrob Agents Chemother 61:e02197–e02116PubMedPubMedCentralCrossRef Kokai-Kun JF et al (2017) The oral beta-lactamase SYN-004 (Ribaxamase) degrades ceftriaxone excreted into the intestine in phase 2a clinical studies. Antimicrob Agents Chemother 61:e02197–e02116PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Pereira PR, DE Paula JB, Cielinski J, Pilonetto M, VON Bahten LC (2014) Effects of low intensity laser in in vitro bacterial culture and in vivo infected wounds. Rev Col Bras Cir 41(1):49–55 Pereira PR, DE Paula JB, Cielinski J, Pilonetto M, VON Bahten LC (2014) Effects of low intensity laser in in vitro bacterial culture and in vivo infected wounds. Rev Col Bras Cir 41(1):49–55
37.
Zurück zum Zitat Amin RM, Bhayana B, Hamblin MR, Dai T (2016) Antimicrobial blue light inactivation of Pseudomonas aeruginosa by photo-excitation of endogenous porphyrins: in vitro and in vivo studies. Lasers Surg Med 48:562–568PubMedPubMedCentralCrossRef Amin RM, Bhayana B, Hamblin MR, Dai T (2016) Antimicrobial blue light inactivation of Pseudomonas aeruginosa by photo-excitation of endogenous porphyrins: in vitro and in vivo studies. Lasers Surg Med 48:562–568PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Samaneh R, Ali Y, Mostafa J, Mahmud NA, Zohre R (2015) Laser therapy for wound healing: a review of current techniques and mechanisms of action. Biosci, Biotech Res Asia 12:217–223CrossRef Samaneh R, Ali Y, Mostafa J, Mahmud NA, Zohre R (2015) Laser therapy for wound healing: a review of current techniques and mechanisms of action. Biosci, Biotech Res Asia 12:217–223CrossRef
39.
Zurück zum Zitat Hamblin MR, Abrahamse H (2019) Can light-based approaches overcome antimicrobial resistance? Drug Dev Res 80:48–67PubMedCrossRef Hamblin MR, Abrahamse H (2019) Can light-based approaches overcome antimicrobial resistance? Drug Dev Res 80:48–67PubMedCrossRef
40.
Zurück zum Zitat Hamblin MR, Viveiros J, Yang C, Ahmadi A, Ganz RA, Tolkoff MJ (2005) Helicobacter pylori accumulates photoactive porphyrins and is killed by visible light. Antimicrob Agents Chemother 49:2822–2827PubMedPubMedCentralCrossRef Hamblin MR, Viveiros J, Yang C, Ahmadi A, Ganz RA, Tolkoff MJ (2005) Helicobacter pylori accumulates photoactive porphyrins and is killed by visible light. Antimicrob Agents Chemother 49:2822–2827PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Dia T, Gupta A, Murrayd CK, Vrahase MS, Tegosa GP, Hamblin MR (2012) Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond? Drug Resist Updat 15:223–236CrossRef Dia T, Gupta A, Murrayd CK, Vrahase MS, Tegosa GP, Hamblin MR (2012) Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond? Drug Resist Updat 15:223–236CrossRef
42.
Zurück zum Zitat Ferro S, Ricchelli F, Monti D, Mancini G, Jori G (2007) Efficient photoinactivation of methicillinresistant Staphylococcus aureus by a novel porphyrin incorporated into a poly-cationic liposome. Int J Biochem Cell Biol 39:1026–1034PubMedCrossRef Ferro S, Ricchelli F, Monti D, Mancini G, Jori G (2007) Efficient photoinactivation of methicillinresistant Staphylococcus aureus by a novel porphyrin incorporated into a poly-cationic liposome. Int J Biochem Cell Biol 39:1026–1034PubMedCrossRef
43.
Zurück zum Zitat Maclean M, Macgregor SJ, Anderson JG, Woolsey G (2009) Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light emitting diode array. Appl Environ Microbiol 75:1932–1937PubMedPubMedCentralCrossRef Maclean M, Macgregor SJ, Anderson JG, Woolsey G (2009) Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light emitting diode array. Appl Environ Microbiol 75:1932–1937PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Maclean M, Macgregor SJ, Anderson JG, Woolsey GA (2008) The role of oxygen in the visible-light inactivation of Staphylococcus aureus. J Photochem Photobiol B Biol 92:180–184CrossRef Maclean M, Macgregor SJ, Anderson JG, Woolsey GA (2008) The role of oxygen in the visible-light inactivation of Staphylococcus aureus. J Photochem Photobiol B Biol 92:180–184CrossRef
45.
Zurück zum Zitat Dai T, Garcia B, Murray CK, Vrahas MS, Hamblin MR (2012) UVC light prophylaxis for cutaneous wound infections in mice. Antimicrob Agents Chemother 56:3841–3848PubMedPubMedCentralCrossRef Dai T, Garcia B, Murray CK, Vrahas MS, Hamblin MR (2012) UVC light prophylaxis for cutaneous wound infections in mice. Antimicrob Agents Chemother 56:3841–3848PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Wang Y, Wang Y, Wang Y, Murray CK, Hamblin MR, Hooper DC, Dai T (2017) Antimicrobial blue light inactivation of pathogenic microbes: state of the art. Drug Resist Updat 33-35:1–22PubMedPubMedCentralCrossRef Wang Y, Wang Y, Wang Y, Murray CK, Hamblin MR, Hooper DC, Dai T (2017) Antimicrobial blue light inactivation of pathogenic microbes: state of the art. Drug Resist Updat 33-35:1–22PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Ziegelberger G (2013) ICNIRP Guidelines on limits of exposure to laser radiation of wavelengths between 180 nm and 1,000 μm. Health Phys 105(3):271–295 Ziegelberger G (2013) ICNIRP Guidelines on limits of exposure to laser radiation of wavelengths between 180 nm and 1,000 μm. Health Phys 105(3):271–295
48.
Zurück zum Zitat Morita S, Tagai C, Shiraishi T, Miyaji K, Iwamuro S (2013) Differential mode of antimicrobial actions of arginine-rich and lysine-rich histones against gram-positive Staphylococcus aureus. Peptides 48:75–82PubMedCrossRef Morita S, Tagai C, Shiraishi T, Miyaji K, Iwamuro S (2013) Differential mode of antimicrobial actions of arginine-rich and lysine-rich histones against gram-positive Staphylococcus aureus. Peptides 48:75–82PubMedCrossRef
49.
Zurück zum Zitat Nitzan Y, Salmon-Divon M, Shporen E, Malik Z (2004) ALA induced photodynamic effects on gram positive and negative bacteria. Photochem Photobiol Sci 3:430–435PubMedCrossRef Nitzan Y, Salmon-Divon M, Shporen E, Malik Z (2004) ALA induced photodynamic effects on gram positive and negative bacteria. Photochem Photobiol Sci 3:430–435PubMedCrossRef
51.
Zurück zum Zitat Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Pam N, Hamblin MR (2013) Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. In Seminars in cutaneous medicine and surgery (Vol. 32, No. 1, p. 41). NIH Public Access Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Pam N, Hamblin MR (2013) Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. In Seminars in cutaneous medicine and surgery (Vol. 32, No. 1, p. 41). NIH Public Access
52.
Zurück zum Zitat Jelínková H (2013) Lasers for medical applications: diagnostics, therapy and surgery. Elsevier Jelínková H (2013) Lasers for medical applications: diagnostics, therapy and surgery. Elsevier
53.
Zurück zum Zitat Krespi YP, Stoodley P, Hall-Stoodley L (2008) Laser disruption of biofilm. Laryngoscope 118(7):1168–1173PubMedCrossRef Krespi YP, Stoodley P, Hall-Stoodley L (2008) Laser disruption of biofilm. Laryngoscope 118(7):1168–1173PubMedCrossRef
54.
Zurück zum Zitat Taylor ZD, Navarro A, Kealey CP, Beenhouwer D, Haake DA, Grundfest WS, Gupta V (2010) Bacterial biofilm disruption using laser generated shockwaves. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology (pp. 1028-1032). IEEE Taylor ZD, Navarro A, Kealey CP, Beenhouwer D, Haake DA, Grundfest WS, Gupta V (2010) Bacterial biofilm disruption using laser generated shockwaves. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology (pp. 1028-1032). IEEE
55.
Zurück zum Zitat Polikov, V., Block, M., Zhang, C., Reichert, W. M., & Hong, J. S. 2011. In vitro models for neuroelectrodes: a paradigm for studying tissue–materials interactions in the brain Polikov, V., Block, M., Zhang, C., Reichert, W. M., & Hong, J. S. 2011. In vitro models for neuroelectrodes: a paradigm for studying tissue–materials interactions in the brain
Metadaten
Titel
The bactericidal efficacy of femtosecond laser-based therapy on the most common infectious bacterial pathogens in chronic wounds: an in vitro study
Publikationsdatum
28.07.2020
Erschienen in
Lasers in Medical Science / Ausgabe 3/2021
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-020-03104-0

Weitere Artikel der Ausgabe 3/2021

Lasers in Medical Science 3/2021 Zur Ausgabe