Skip to main content
Erschienen in: Lasers in Medical Science 6/2021

16.10.2020 | Original Article

The effect of combined curcumin-mediated photodynamic therapy and artificial skin on Staphylococcus aureus–infected wounds in rats

verfasst von: Fernanda Rossi Paolillo, Phamilla Gracielli Sousa Rodrigues, Vanderlei Salvador Bagnato, Fernanda Alves, Layla Pires, Adalberto Vieira Corazza

Erschienen in: Lasers in Medical Science | Ausgabe 6/2021

Einloggen, um Zugang zu erhalten

Abstract

Healing wounds represent a major public health problem, mainly when it is infected. Besides that, the antibiotics misuse and overuse favor the development of bacterial resistance. This study evaluated the effects of antimicrobial photodynamic therapy (aPDT) combined with artificial skin on disinfection of infected skin wound in rats. Twenty-four Wistar rats were randomly distributed into 4 groups (n = 6): (i) control—untreated; (ii) aPDT—treated with curcumin-mediated aPDT (blue light); (iii) artificial skin—treated with artificial skin alcohol-based; and (iv) aPDT plus artificial skin—treated with aPDT associated with artificial skin alcohol-based. For the in vivo model, a full-thickness biopsy with 0.80 cm was performed in order to inoculate the microorganism Staphylococcus aureus (ATCC 25923). The aPDT was performed with a curcumin gel and a blue LED light (450 nm, 80 mW/cm2) at the dose of 60 J/cm2 and the treatment with alcohol-based artificial skin was done with the topical application of 250 μL. Additional animals were submitted to aPDT combined with the artificial skin. After treatments, the number of colony-forming units (CFU) and the damage area were determined. Data were analyzed by two-way repeated measures ANOVA and Tukey tests. The highest reduction of the bacterial viability was observed in the PDT plus artificial skin group (4.14 log10), followed by artificial skin (2.38 log10) and PDT (2.22 log10) groups. In addition, all treated groups showed higher relative area of wound contraction (36.21% for the PDT, 38.41% for artificial skin, and 35.02% for PDT plus artificial) in comparison with the control group. These findings provide evidence for the positive benefits of aPDT with blue light and curcumin associated with artificial skin to decontaminate and accelerate the wound contraction.
Literatur
1.
Zurück zum Zitat Pallin DJ, Egan DJ, Pelletier AJ, Espinola JA, Hooper DC, Camargo CA Jr (2008) Increased US emergency department visits for skin and soft tissue infections, and changes in antibiotic choices, during the emergence of community-associated methicillin-resistant Staphylococcus aureus. Ann Emerg Med 51(3):291–298CrossRef Pallin DJ, Egan DJ, Pelletier AJ, Espinola JA, Hooper DC, Camargo CA Jr (2008) Increased US emergency department visits for skin and soft tissue infections, and changes in antibiotic choices, during the emergence of community-associated methicillin-resistant Staphylococcus aureus. Ann Emerg Med 51(3):291–298CrossRef
2.
Zurück zum Zitat Chahine EB, Sucher AJ (2015) Skin and soft tissue infections. In: Murphy JE, Lee MW (eds) PSAP Infectious Diseases. American College of Clinical Pharmacy, pp 5–26 Chahine EB, Sucher AJ (2015) Skin and soft tissue infections. In: Murphy JE, Lee MW (eds) PSAP Infectious Diseases. American College of Clinical Pharmacy, pp 5–26
3.
Zurück zum Zitat Dai T, Gupta A, Huang YY, Sherwood ME, Murray CK, Vrahas MS, Kielian T, Hamblin MR (2013) Blue light eliminates community-acquired methicillin-resistant Staphylococcus aureus in infected mouse skin abrasions. Photomed Laser Surg 31(11):531–538CrossRef Dai T, Gupta A, Huang YY, Sherwood ME, Murray CK, Vrahas MS, Kielian T, Hamblin MR (2013) Blue light eliminates community-acquired methicillin-resistant Staphylococcus aureus in infected mouse skin abrasions. Photomed Laser Surg 31(11):531–538CrossRef
4.
Zurück zum Zitat Gould IM, Bal AM (2013) New antibiotic agents in the pipeline and how they can overcome microbial resistance. Virulence 4(2):185–191CrossRef Gould IM, Bal AM (2013) New antibiotic agents in the pipeline and how they can overcome microbial resistance. Virulence 4(2):185–191CrossRef
5.
Zurück zum Zitat Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3(5):436–450CrossRef Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3(5):436–450CrossRef
6.
Zurück zum Zitat Garcia VG, de Lima MA, Okamoto T, Milanezi LA, Júnior EC, Fernandes LA, de Almeida JM, Theodoro LH (2010) Effect of photodynamic therapy on the healing of cutaneous third-degree-burn: histological study in rats. Lasers Med Sci 25(2):221–228CrossRef Garcia VG, de Lima MA, Okamoto T, Milanezi LA, Júnior EC, Fernandes LA, de Almeida JM, Theodoro LH (2010) Effect of photodynamic therapy on the healing of cutaneous third-degree-burn: histological study in rats. Lasers Med Sci 25(2):221–228CrossRef
7.
Zurück zum Zitat Zolfaghari PS, Packer S, Singer M, Nair SP, Bennett J, Street C, Wilson M (2009) In vivo killing of Staphylococcus aureus using a light-activated antimicrobial agent. BMC Microbiol 9:27CrossRef Zolfaghari PS, Packer S, Singer M, Nair SP, Bennett J, Street C, Wilson M (2009) In vivo killing of Staphylococcus aureus using a light-activated antimicrobial agent. BMC Microbiol 9:27CrossRef
8.
Zurück zum Zitat Park JH, Ahn MY, Kim YC, Kim SA, Moon YH, Ahn SG, Yoon JH (2012) In vitro and in vivo antimicrobial effect of photodynamic therapy using a highly pure chlorin e6 against Staphylococcus aureus Xen29. Biol Pharm Bull 35(4):509–514CrossRef Park JH, Ahn MY, Kim YC, Kim SA, Moon YH, Ahn SG, Yoon JH (2012) In vitro and in vivo antimicrobial effect of photodynamic therapy using a highly pure chlorin e6 against Staphylococcus aureus Xen29. Biol Pharm Bull 35(4):509–514CrossRef
9.
Zurück zum Zitat Hamblin MR, O’Donnell DA, Murthy N, Contag CH, Hasan T (2002) Rapid control of wound infections by targeted photodynamic therapy monitored by in vivo bioluminescence imaging. Photochem Photobiol 75(1):51–57CrossRef Hamblin MR, O’Donnell DA, Murthy N, Contag CH, Hasan T (2002) Rapid control of wound infections by targeted photodynamic therapy monitored by in vivo bioluminescence imaging. Photochem Photobiol 75(1):51–57CrossRef
10.
Zurück zum Zitat Lambrechts SA, Demidova TN, Aalders MC, Hasan T, Hamblin MR (2005) Photodynamic therapy for Staphylococcus aureus infected burn wounds in mice. Photochem Photobiol Sci 4(7):503–509CrossRef Lambrechts SA, Demidova TN, Aalders MC, Hasan T, Hamblin MR (2005) Photodynamic therapy for Staphylococcus aureus infected burn wounds in mice. Photochem Photobiol Sci 4(7):503–509CrossRef
11.
Zurück zum Zitat Dai T, Tegos GP, Zhiyentayev T, Mylonakis E, Hamblin MR (2010) Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model. Lasers Surg Med 42(1):38–44CrossRef Dai T, Tegos GP, Zhiyentayev T, Mylonakis E, Hamblin MR (2010) Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model. Lasers Surg Med 42(1):38–44CrossRef
13.
Zurück zum Zitat Dovigo LN, Pavarina AC, Ribeiro AP, Brunetti IL, Costa CA, Jacomassi DP, Bagnato VS, Kurachi C (2011) Investigation of the photodynamic effects of curcumin against Candida albicans. Photochem Photobiol 87(4):895–903CrossRef Dovigo LN, Pavarina AC, Ribeiro AP, Brunetti IL, Costa CA, Jacomassi DP, Bagnato VS, Kurachi C (2011) Investigation of the photodynamic effects of curcumin against Candida albicans. Photochem Photobiol 87(4):895–903CrossRef
14.
Zurück zum Zitat Leite DP, Paolillo FR, Parmesano TN, Fontana CR, Bagnato VS (2014) Effects of photodynamic therapy with blue light and curcumin as mouth rinse for oral disinfection: a randomized controlled trial. Photomed Laser Surg 32(11):627–632CrossRef Leite DP, Paolillo FR, Parmesano TN, Fontana CR, Bagnato VS (2014) Effects of photodynamic therapy with blue light and curcumin as mouth rinse for oral disinfection: a randomized controlled trial. Photomed Laser Surg 32(11):627–632CrossRef
15.
Zurück zum Zitat Halim AS, Khoo TL, Mohd. Yussof SJ (2010) Biologic and synthetic skin substitutes: an overview. Indian J Plastic Surg 43(Suppl):S23–S28CrossRef Halim AS, Khoo TL, Mohd. Yussof SJ (2010) Biologic and synthetic skin substitutes: an overview. Indian J Plastic Surg 43(Suppl):S23–S28CrossRef
16.
Zurück zum Zitat Nathoo R, Howe N, Cohen G (2014) Skin substitutes: an overview of the key players in wound management. J Clin Aesthet Dermatol 7(10):44–48PubMedPubMedCentral Nathoo R, Howe N, Cohen G (2014) Skin substitutes: an overview of the key players in wound management. J Clin Aesthet Dermatol 7(10):44–48PubMedPubMedCentral
17.
Zurück zum Zitat Varkey M, Ding J, Tredget EE (2015) Advances in skin substitutes-potential of tissue engineered skin for facilitating anti-fibrotic healing. J Funct Biomater 6(3):547–563CrossRef Varkey M, Ding J, Tredget EE (2015) Advances in skin substitutes-potential of tissue engineered skin for facilitating anti-fibrotic healing. J Funct Biomater 6(3):547–563CrossRef
18.
Zurück zum Zitat Daamen WF, Veerkamp JH, van Hest JCM, Van Kuppevelt TH (2007) Elastin as a biomaterial for tissue engineering. Biomaterials 28:4378–4398CrossRef Daamen WF, Veerkamp JH, van Hest JCM, Van Kuppevelt TH (2007) Elastin as a biomaterial for tissue engineering. Biomaterials 28:4378–4398CrossRef
19.
Zurück zum Zitat Miyata T, Taira T, Noishiki Y (1992) Collagen engineering for biomaterial use. Clin Mater 9:139–148CrossRef Miyata T, Taira T, Noishiki Y (1992) Collagen engineering for biomaterial use. Clin Mater 9:139–148CrossRef
20.
Zurück zum Zitat Dai NT, Williamson MR, Khammo N, Adams EF, Coombes AG (2004) Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin. Biomaterials 25(18):4263–4271CrossRef Dai NT, Williamson MR, Khammo N, Adams EF, Coombes AG (2004) Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin. Biomaterials 25(18):4263–4271CrossRef
21.
Zurück zum Zitat Park SN, Kim JK, Suh H (2004) Evaluation of antibiotic-loaded collagen-hyaluronic acid matrix as a skin substitute. Biomaterials 25(17):3689–3698CrossRef Park SN, Kim JK, Suh H (2004) Evaluation of antibiotic-loaded collagen-hyaluronic acid matrix as a skin substitute. Biomaterials 25(17):3689–3698CrossRef
22.
Zurück zum Zitat Li JK, Wang N, Wu XS (1998) Poly(vinyl alcohol) nanoparticles prepared by freezing-thawing process for protein/peptide drug delivery. J Control Release 56(1-3):117–126CrossRef Li JK, Wang N, Wu XS (1998) Poly(vinyl alcohol) nanoparticles prepared by freezing-thawing process for protein/peptide drug delivery. J Control Release 56(1-3):117–126CrossRef
23.
Zurück zum Zitat Rozman P, Bolta Z (2007) Use of platelet growth factors in treating wounds and soft-tissue injuries. Acta Dermatovenerol Alp Pannonica Adriat 16(4):156–165PubMed Rozman P, Bolta Z (2007) Use of platelet growth factors in treating wounds and soft-tissue injuries. Acta Dermatovenerol Alp Pannonica Adriat 16(4):156–165PubMed
24.
Zurück zum Zitat Burkatovskaya M, Castano AP, Demidova-Rice TN, Tegos GP, Hamblin MR (2008) Effect of chitosan acetate bandage on wound healing in infected and noninfected wounds in mice. Wound Repair Regen 16(3):425–431CrossRef Burkatovskaya M, Castano AP, Demidova-Rice TN, Tegos GP, Hamblin MR (2008) Effect of chitosan acetate bandage on wound healing in infected and noninfected wounds in mice. Wound Repair Regen 16(3):425–431CrossRef
25.
Zurück zum Zitat Janota R (2015) Película protetora epidérmica corpórea antibacteriana, processo de obtenção de película protetora epidérmica corpórea antibacteriana e modo de aplicação. BR patent no. BR 10 2012 023591 9 A2. BR: INPI Janota R (2015) Película protetora epidérmica corpórea antibacteriana, processo de obtenção de película protetora epidérmica corpórea antibacteriana e modo de aplicação. BR patent no. BR 10 2012 023591 9 A2. BR: INPI
26.
Zurück zum Zitat Lanzafame RJ, Stadler I, Cunningham R, Muhlbauer A, Griggs J, Soltz R, Soltz BA (2013) Preliminary assessment of photoactivated antimicrobial collagen on bioburden in a murine pressure ulcer model. Photomed Laser Surg 31(11):539–546CrossRef Lanzafame RJ, Stadler I, Cunningham R, Muhlbauer A, Griggs J, Soltz R, Soltz BA (2013) Preliminary assessment of photoactivated antimicrobial collagen on bioburden in a murine pressure ulcer model. Photomed Laser Surg 31(11):539–546CrossRef
27.
Zurück zum Zitat Topaloglu N, Güney M, Yuksel S, Gülsoy M (2015) Antibacterial photodynamic therapy with 808-nm laser and indocyanine green on abrasion wound models. J Biomed Opt 20(2):28003CrossRef Topaloglu N, Güney M, Yuksel S, Gülsoy M (2015) Antibacterial photodynamic therapy with 808-nm laser and indocyanine green on abrasion wound models. J Biomed Opt 20(2):28003CrossRef
28.
Zurück zum Zitat Xu Z, Hsia HC (2018) The impact of microbial communities on wound healing: a review. Ann Plast Surg 81(1):113–123CrossRef Xu Z, Hsia HC (2018) The impact of microbial communities on wound healing: a review. Ann Plast Surg 81(1):113–123CrossRef
29.
Zurück zum Zitat Lindsay S, Oates A, Bourdillon K (2017) The detrimental impact of extracellular bacterial proteases on wound healing. Int Wound J 14(6):1237–1247CrossRef Lindsay S, Oates A, Bourdillon K (2017) The detrimental impact of extracellular bacterial proteases on wound healing. Int Wound J 14(6):1237–1247CrossRef
30.
Zurück zum Zitat Kang YO, Yoon IS, Lee SY, Kim DD, Lee SJ, Park WH, Hudson SM (2010) Chitosan-coated poly(vinyl alcohol) nanofibers for wound dressings. J Biomed Mater Res B Appl Biomater 92(2):568–576PubMed Kang YO, Yoon IS, Lee SY, Kim DD, Lee SJ, Park WH, Hudson SM (2010) Chitosan-coated poly(vinyl alcohol) nanofibers for wound dressings. J Biomed Mater Res B Appl Biomater 92(2):568–576PubMed
31.
Zurück zum Zitat Chen Z, Zhang Y, Wang D, Li L, Zhou S, Huang JH, Chen J, Hu P, Huang M (2016) Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection. J Biomed Opt 21(1):18001CrossRef Chen Z, Zhang Y, Wang D, Li L, Zhou S, Huang JH, Chen J, Hu P, Huang M (2016) Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection. J Biomed Opt 21(1):18001CrossRef
32.
Zurück zum Zitat Agel MR, Baghdan E, Pinnapireddy SR, Lehmann J, Schäfer J, Bakowsky U (2019) Curcumin loaded nanoparticles as efficient photoactive formulations against gram-positive and gram-negative bacteria. Colloids Surf B Biointerfaces 1(178):460–468CrossRef Agel MR, Baghdan E, Pinnapireddy SR, Lehmann J, Schäfer J, Bakowsky U (2019) Curcumin loaded nanoparticles as efficient photoactive formulations against gram-positive and gram-negative bacteria. Colloids Surf B Biointerfaces 1(178):460–468CrossRef
33.
Zurück zum Zitat Sun Y, Ogawa R, Xiao BH, Feng YX, Wu Y, Chen LH, Gao XH, Chen HD (2019) Antimicrobial photodynamic therapy in skin wound healing: a systematic review of animal studies. Int Wound J 17(2):285–299CrossRef Sun Y, Ogawa R, Xiao BH, Feng YX, Wu Y, Chen LH, Gao XH, Chen HD (2019) Antimicrobial photodynamic therapy in skin wound healing: a systematic review of animal studies. Int Wound J 17(2):285–299CrossRef
34.
Zurück zum Zitat Dai T, Tegos GP, Lu Z, Huang L, Zhiyentayev T, Franklin MJ, Baer DG, Hamblin MR (2009) Photodynamic therapy for Acinetobacter baumannii burn infections in mice. Antimicrob Agents Chemother 53(9):3929–3934CrossRef Dai T, Tegos GP, Lu Z, Huang L, Zhiyentayev T, Franklin MJ, Baer DG, Hamblin MR (2009) Photodynamic therapy for Acinetobacter baumannii burn infections in mice. Antimicrob Agents Chemother 53(9):3929–3934CrossRef
35.
Zurück zum Zitat Okada N, Muraoka E, Fujisawa S, Machino M (2012) Effects of curcumin and capsaicin irradiated with visible light on murine oral mucosa. In Vivo 26(5):759–764PubMed Okada N, Muraoka E, Fujisawa S, Machino M (2012) Effects of curcumin and capsaicin irradiated with visible light on murine oral mucosa. In Vivo 26(5):759–764PubMed
36.
Zurück zum Zitat Ribeiro AP, Pavarina AC, Dovigo LN, Brunetti IL, Bagnato VS, Vergani CE, Costa CA (2013) Phototoxic effect of curcumin on methicillin-resistant Staphylococcus aureus and L929 fibroblasts. Lasers Med Sci 28(2):391–398CrossRef Ribeiro AP, Pavarina AC, Dovigo LN, Brunetti IL, Bagnato VS, Vergani CE, Costa CA (2013) Phototoxic effect of curcumin on methicillin-resistant Staphylococcus aureus and L929 fibroblasts. Lasers Med Sci 28(2):391–398CrossRef
37.
Zurück zum Zitat Kunchandy E, Rao MNA (1990) Oxygen radical scavenging activity of curcumin. Int J Pharm 58:237–240CrossRef Kunchandy E, Rao MNA (1990) Oxygen radical scavenging activity of curcumin. Int J Pharm 58:237–240CrossRef
38.
Zurück zum Zitat Dahl TA, Mcgowan WM, Shand MA, Srinivasan VS (1989) Photokilling of bacteria by the natural dye curcumin. Arch Microbiol 151:183–185CrossRef Dahl TA, Mcgowan WM, Shand MA, Srinivasan VS (1989) Photokilling of bacteria by the natural dye curcumin. Arch Microbiol 151:183–185CrossRef
39.
Zurück zum Zitat Dovigo LN, Carmello JC, de Souza Costa CA, Vergani CE, Brunetti IL, Bagnato VS, Pavarina AC (2013) Curcumin-mediated photodynamic inactivation of Candida albicans in a murine model of oral candidiasis. Med Mycol 51(3):243–251CrossRef Dovigo LN, Carmello JC, de Souza Costa CA, Vergani CE, Brunetti IL, Bagnato VS, Pavarina AC (2013) Curcumin-mediated photodynamic inactivation of Candida albicans in a murine model of oral candidiasis. Med Mycol 51(3):243–251CrossRef
40.
Zurück zum Zitat da Silva AP, Carbinato FM, Bagnato VS, Inada NM (2015) A promising strategy for the treatment of onychomycosis with curcumin and photodynamic therapy. J Pharm Pharmacol 3:434–437 da Silva AP, Carbinato FM, Bagnato VS, Inada NM (2015) A promising strategy for the treatment of onychomycosis with curcumin and photodynamic therapy. J Pharm Pharmacol 3:434–437
41.
Zurück zum Zitat Soares JM, Silva KOO, Inada NM, Bagnato VS, Blanco KC (2020) Optimization for microbial incorporation and efficiency of photodynamic therapy using variation on curcumin formulation. Photodiagn Photodyn Ther 29:101652CrossRef Soares JM, Silva KOO, Inada NM, Bagnato VS, Blanco KC (2020) Optimization for microbial incorporation and efficiency of photodynamic therapy using variation on curcumin formulation. Photodiagn Photodyn Ther 29:101652CrossRef
42.
Zurück zum Zitat Korsmeyer RW, Peppas NA (1981) Effect of the morphology of hydrophilic polymeric matrices on the diffusion and release of water soluble drugs. J Membr Sci 9(3):211–227CrossRef Korsmeyer RW, Peppas NA (1981) Effect of the morphology of hydrophilic polymeric matrices on the diffusion and release of water soluble drugs. J Membr Sci 9(3):211–227CrossRef
43.
Zurück zum Zitat Corazza AV, Jorge J, Kurachi C, Bagnato VS (2007) Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomed Laser Surg 25(2):102–106CrossRef Corazza AV, Jorge J, Kurachi C, Bagnato VS (2007) Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomed Laser Surg 25(2):102–106CrossRef
Metadaten
Titel
The effect of combined curcumin-mediated photodynamic therapy and artificial skin on Staphylococcus aureus–infected wounds in rats
verfasst von
Fernanda Rossi Paolillo
Phamilla Gracielli Sousa Rodrigues
Vanderlei Salvador Bagnato
Fernanda Alves
Layla Pires
Adalberto Vieira Corazza
Publikationsdatum
16.10.2020
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 6/2021
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-020-03160-6

Weitere Artikel der Ausgabe 6/2021

Lasers in Medical Science 6/2021 Zur Ausgabe