Skip to main content
Erschienen in: Medical Oncology 2/2013

01.06.2013 | Original Paper

Decreased expression of the mitochondrial metabolic enzyme aconitase (ACO2) is associated with poor prognosis in gastric cancer

verfasst von: Peng Wang, Cong Mai, Yong-li Wei, Jing-jing Zhao, Yu-min Hu, Zhao-lei Zeng, Jing Yang, Wen-hua Lu, Rui-hua Xu, Peng Huang

Erschienen in: Medical Oncology | Ausgabe 2/2013

Einloggen, um Zugang zu erhalten

Abstract

Alterations in energy metabolism play a major role in cancer development. Aconitase (ACO2) is an essential enzyme located in the mitochondria and catalyzes the interconversion of citrate and isocitrate in the tricarboxylic acid cycle. Recent studies suggest that the expression of ACO2 may be altered in certain types of cancer. The purpose of this study was to examine ACO2 expression in clinical tumor specimens from patients with gastric cancer and to evaluate the clinical relevance of ACO2 expression in gastric cancer. A total of 456 paraffin-embedded gastric cancer tissues and 30 pairs of freshly frozen tissues were used in this study. Real-time quantitative reverse transcription polymerase chain reaction, western blotting, and immunohistochemical staining were performed to measure ACO2 expression in tumor tissues and matched adjacent non-tumorous tissues. The results showed that the expression of ACO2 was significantly down-regulated in gastric cancer tissues compared with matched adjacent non-tumorous tissues and was associated with clinical stage (p = 0.001), T classification (p = 0.027), N classification (p = 0.012), M classification (p = 0.002), and pathological differentiation states (p = 0.036). Patients with lower ACO2 expression had a shorter survival time than those with higher ACO2 expression. Univariate and multivariate analyses indicated that ACO2 expression functions as an independent prognostic factor (p < 0.001). Our data suggested that ACO2 could play an important role in gastric cancer and may potentially serve as a prognostic biomarker.
Literatur
1.
Zurück zum Zitat Danaei G, Vander Hoorn S, Lopez AD, Murray CJ, Ezzati M. Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors. Lancet. 2005;366(9499):1784–93.PubMedCrossRef Danaei G, Vander Hoorn S, Lopez AD, Murray CJ, Ezzati M. Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors. Lancet. 2005;366(9499):1784–93.PubMedCrossRef
2.
Zurück zum Zitat Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29.PubMedCrossRef Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29.PubMedCrossRef
3.
Zurück zum Zitat Nagini S. Carcinoma of the stomach: a review of epidemiology, pathogenesis, molecular genetics and chemoprevention. World J Gastrointest Oncol. 2012;4(7):156–69.PubMedCrossRef Nagini S. Carcinoma of the stomach: a review of epidemiology, pathogenesis, molecular genetics and chemoprevention. World J Gastrointest Oncol. 2012;4(7):156–69.PubMedCrossRef
4.
Zurück zum Zitat Yasui W, Oue N, Aung PP, Matsumura S, Shutoh M, Nakayama H. Molecular-pathological prognostic factors of gastric cancer: a review. Gastric Cancer. 2005;8(2):86–94.PubMedCrossRef Yasui W, Oue N, Aung PP, Matsumura S, Shutoh M, Nakayama H. Molecular-pathological prognostic factors of gastric cancer: a review. Gastric Cancer. 2005;8(2):86–94.PubMedCrossRef
5.
Zurück zum Zitat Chen CN, Lin JJ, Chen JJ, Lee PH, Yang CY, Kuo ML, et al. Gene expression profile predicts patient survival of gastric cancer after surgical resection. J Clin Oncol. 2005;23(29):7286–95.PubMedCrossRef Chen CN, Lin JJ, Chen JJ, Lee PH, Yang CY, Kuo ML, et al. Gene expression profile predicts patient survival of gastric cancer after surgical resection. J Clin Oncol. 2005;23(29):7286–95.PubMedCrossRef
6.
Zurück zum Zitat Hippo Y, Taniguchi H, Tsutsumi S, Machida N, Chong JM, Fukayama M, et al. Global gene expression analysis of gastric cancer by oligonucleotide microarrays. Cancer Res. 2002;62(1):233–40.PubMed Hippo Y, Taniguchi H, Tsutsumi S, Machida N, Chong JM, Fukayama M, et al. Global gene expression analysis of gastric cancer by oligonucleotide microarrays. Cancer Res. 2002;62(1):233–40.PubMed
7.
Zurück zum Zitat Lee HS, Cho SB, Lee HE, Kim MA, Kim JH, Park do J, et al. Protein expression profiling and molecular classification of gastric cancer by the tissue array method. Clin Cancer Res. 2007;13(14):4154–63.PubMedCrossRef Lee HS, Cho SB, Lee HE, Kim MA, Kim JH, Park do J, et al. Protein expression profiling and molecular classification of gastric cancer by the tissue array method. Clin Cancer Res. 2007;13(14):4154–63.PubMedCrossRef
8.
Zurück zum Zitat Beinert H, Kennedy MC. Aconitase, a two-faced protein: enzyme and iron regulatory factor. FASEB J. 1993;7(15):1442–9.PubMed Beinert H, Kennedy MC. Aconitase, a two-faced protein: enzyme and iron regulatory factor. FASEB J. 1993;7(15):1442–9.PubMed
9.
Zurück zum Zitat Gruer MJ, Artymiuk PJ, Guest JR. The aconitase family: three structural variations on a common theme. Trends Biochem Sci. 1997;22(1):3–6.PubMedCrossRef Gruer MJ, Artymiuk PJ, Guest JR. The aconitase family: three structural variations on a common theme. Trends Biochem Sci. 1997;22(1):3–6.PubMedCrossRef
10.
Zurück zum Zitat Robbins AH, Stout CD. Structure of activated aconitase: formation of the [4Fe–4S] cluster in the crystal. Proc Natl Acad Sci USA. 1989;86(10):3639–43.PubMedCrossRef Robbins AH, Stout CD. Structure of activated aconitase: formation of the [4Fe–4S] cluster in the crystal. Proc Natl Acad Sci USA. 1989;86(10):3639–43.PubMedCrossRef
11.
Zurück zum Zitat Haile DJ, Rouault TA, Tang CK, Chin J, Harford JB, Klausner RD. Reciprocal control of RNA-binding and aconitase activity in the regulation of the iron-responsive element binding protein: role of the iron-sulfur cluster. Proc Natl Acad Sci USA. 1992;89(16):7536–40.PubMedCrossRef Haile DJ, Rouault TA, Tang CK, Chin J, Harford JB, Klausner RD. Reciprocal control of RNA-binding and aconitase activity in the regulation of the iron-responsive element binding protein: role of the iron-sulfur cluster. Proc Natl Acad Sci USA. 1992;89(16):7536–40.PubMedCrossRef
12.
Zurück zum Zitat Tong WH, Rouault TA. Metabolic regulation of citrate and iron by aconitase: role of iron-sulfur cluster biogenesis. Biometals. 2007;20(3–4):549–64.PubMedCrossRef Tong WH, Rouault TA. Metabolic regulation of citrate and iron by aconitase: role of iron-sulfur cluster biogenesis. Biometals. 2007;20(3–4):549–64.PubMedCrossRef
13.
Zurück zum Zitat Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedCrossRef Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedCrossRef
15.
Zurück zum Zitat Warburg O. On respiratory impairment in cancer cells. Science. 1956;124(3215):269–70.PubMed Warburg O. On respiratory impairment in cancer cells. Science. 1956;124(3215):269–70.PubMed
16.
Zurück zum Zitat Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell. 2008;13(6):472–82.PubMedCrossRef Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell. 2008;13(6):472–82.PubMedCrossRef
17.
Zurück zum Zitat Semenza GL. Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol. 2009;19(1):12–6.PubMedCrossRef Semenza GL. Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol. 2009;19(1):12–6.PubMedCrossRef
18.
Zurück zum Zitat Cai Z, Zhao JS, Li JJ, Peng DN, Wang XY, Chen TL, et al. A combined proteomics and metabolomics profiling of gastric cardia cancer reveals characteristic dysregulations in glucose metabolism. Mol Cell Proteomics. 2010;9(12):2617–28.PubMedCrossRef Cai Z, Zhao JS, Li JJ, Peng DN, Wang XY, Chen TL, et al. A combined proteomics and metabolomics profiling of gastric cardia cancer reveals characteristic dysregulations in glucose metabolism. Mol Cell Proteomics. 2010;9(12):2617–28.PubMedCrossRef
19.
Zurück zum Zitat Laiho P, Hienonen T, Mecklin JP, Jarvinen H, Karhu A, Launonen V, et al. Mutation and LOH analysis of ACO2 in colorectal cancer: no evidence of biallelic genetic inactivation. J Med Genet. 2003;40(5):e73.PubMedCrossRef Laiho P, Hienonen T, Mecklin JP, Jarvinen H, Karhu A, Launonen V, et al. Mutation and LOH analysis of ACO2 in colorectal cancer: no evidence of biallelic genetic inactivation. J Med Genet. 2003;40(5):e73.PubMedCrossRef
20.
Zurück zum Zitat Bota DA, Davies KJ. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol. 2002;4(9):674–80.PubMedCrossRef Bota DA, Davies KJ. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol. 2002;4(9):674–80.PubMedCrossRef
21.
Zurück zum Zitat Szatrowski TP, Nathan CF. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991;51(3):794–8.PubMed Szatrowski TP, Nathan CF. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991;51(3):794–8.PubMed
22.
Zurück zum Zitat Toyokuni S, Okamoto K, Yodoi J, Hiai H. Persistent oxidative stress in cancer. FEBS Lett. 1995;358(1):1–3.PubMedCrossRef Toyokuni S, Okamoto K, Yodoi J, Hiai H. Persistent oxidative stress in cancer. FEBS Lett. 1995;358(1):1–3.PubMedCrossRef
23.
Zurück zum Zitat Chen XJ, Wang X, Butow RA. Yeast aconitase binds and provides metabolically coupled protection to mitochondrial DNA. Proc Natl Acad Sci USA. 2007;104(34):13738–43.PubMedCrossRef Chen XJ, Wang X, Butow RA. Yeast aconitase binds and provides metabolically coupled protection to mitochondrial DNA. Proc Natl Acad Sci USA. 2007;104(34):13738–43.PubMedCrossRef
24.
Zurück zum Zitat Shadel GS, Mitochondrial DNA. aconitase ‘wraps’ it up. Trends Biochem Sci. 2005;30(6):294–6.PubMedCrossRef Shadel GS, Mitochondrial DNA. aconitase ‘wraps’ it up. Trends Biochem Sci. 2005;30(6):294–6.PubMedCrossRef
25.
Zurück zum Zitat Chen XJ, Wang X, Kaufman BA, Butow RA. Aconitase couples metabolic regulation to mitochondrial DNA maintenance. Science. 2005;307(5710):714–7.PubMedCrossRef Chen XJ, Wang X, Kaufman BA, Butow RA. Aconitase couples metabolic regulation to mitochondrial DNA maintenance. Science. 2005;307(5710):714–7.PubMedCrossRef
26.
Zurück zum Zitat Sudarshan S, Sourbier C, Kong HS, Block K, Valera Romero VA, Yang Y, et al. Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and hypoxia-inducible transcription factor 1 alpha stabilization by glucose-dependent generation of reactive oxygen species. Mol Cell Biol. 2009;29(15):4080–90.PubMedCrossRef Sudarshan S, Sourbier C, Kong HS, Block K, Valera Romero VA, Yang Y, et al. Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and hypoxia-inducible transcription factor 1 alpha stabilization by glucose-dependent generation of reactive oxygen species. Mol Cell Biol. 2009;29(15):4080–90.PubMedCrossRef
27.
Zurück zum Zitat Bi X, Lin Q, Foo TW, Joshi S, You T, Shen HM, et al. Proteomic analysis of colorectal cancer reveals alterations in metabolic pathways: mechanism of tumorigenesis. Mol Cell Proteomics. 2006;5(6):1119–30.PubMedCrossRef Bi X, Lin Q, Foo TW, Joshi S, You T, Shen HM, et al. Proteomic analysis of colorectal cancer reveals alterations in metabolic pathways: mechanism of tumorigenesis. Mol Cell Proteomics. 2006;5(6):1119–30.PubMedCrossRef
28.
Zurück zum Zitat Robey IF, Stephen RM, Brown KS, Baggett BK, Gatenby RA, Gillies RJ. Regulation of the Warburg effect in early-passage breast cancer cells. Neoplasia. 2008;10(8):745–56.PubMed Robey IF, Stephen RM, Brown KS, Baggett BK, Gatenby RA, Gillies RJ. Regulation of the Warburg effect in early-passage breast cancer cells. Neoplasia. 2008;10(8):745–56.PubMed
29.
Zurück zum Zitat Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB. Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev. 2008;18(1):54–61.PubMedCrossRef Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB. Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev. 2008;18(1):54–61.PubMedCrossRef
30.
Zurück zum Zitat Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–64.PubMedCrossRef Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–64.PubMedCrossRef
Metadaten
Titel
Decreased expression of the mitochondrial metabolic enzyme aconitase (ACO2) is associated with poor prognosis in gastric cancer
verfasst von
Peng Wang
Cong Mai
Yong-li Wei
Jing-jing Zhao
Yu-min Hu
Zhao-lei Zeng
Jing Yang
Wen-hua Lu
Rui-hua Xu
Peng Huang
Publikationsdatum
01.06.2013
Verlag
Springer US
Erschienen in
Medical Oncology / Ausgabe 2/2013
Print ISSN: 1357-0560
Elektronische ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-013-0552-5

Weitere Artikel der Ausgabe 2/2013

Medical Oncology 2/2013 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.