Skip to main content
Erschienen in: Brain Structure and Function 5/2005

01.06.2005 | Original Article

Decreased gap junctional communication in neurobiotin microinjected lens epithelial cells after taxol treatment

verfasst von: Daniel Giessmann, Carsten Theiss, Winrich Breipohl, Karl Meller

Erschienen in: Brain Structure and Function | Ausgabe 5/2005

Einloggen, um Zugang zu erhalten

Abstract

The aim of the study was to examine gap-junction-mediated intercellular communication after experimentally induced aggregations of microtubules in cultured bovine lens epithelial cells. Intercellular communication between lens cells appears to be crucial for normal lens homeostasis. However, investigations on the maintenance of direct ion and metabolite exchange via gap junctions and its quantified dependency of cytoskeletal microtubules have not been available under conditions leading to bundling of microtubules. Thus, metabolic coupling of neighboring lens epithelial cells was quantified following microinjections of neurobiotin into single cells under various conditions. In controls, intensive gap-junction-mediated intercellular communication could be documented by dye-spreading of microinjected neurobiotin. In contrast, taxol treatment for 1–3 days impaired, but did not completely block gap-junction-mediated intercellular communication. After depletion of taxol, a complete recovery of intercellular communication was achieved. In addition, confocal laser scanning microscopy and rapid-freeze deep-etch electron microscopy revealed a displacement of actin-filaments from the perinuclear cytoplasm, accompanied by an abnormal aggregation of microtubules after taxol treatment, including impeded translocation of connexin 43 from the cytoplasm into the plasma membrane. Incubation of cells with nocodazole destroyed the microtubule network, accompanied by a clear reduction of plasma-membrane-integrated connexin 43 and significant impairment of dye spreading. Thus, in lens epithelial cells intercellular communication at gap junctions made by connexin 43 depends on the integrity of the microtubule network through the translocation of connexins to the plasma membrane.
Literatur
Zurück zum Zitat Berthoud VM, Cook AJ, Beyer EC (1994) Characterization of the gap junction protein connexin56 in the chicken lens by immunofluorescence and immunoblotting. Invest Ophthalmol Vis Sci 35:4109–4117PubMed Berthoud VM, Cook AJ, Beyer EC (1994) Characterization of the gap junction protein connexin56 in the chicken lens by immunofluorescence and immunoblotting. Invest Ophthalmol Vis Sci 35:4109–4117PubMed
Zurück zum Zitat Berthoud VM, Bassnett S, Beyer EC (1999) Cultured chicken embryo lens cells resemble differentiating fiber cells in vivo and contain two kinetic pools of connexin 56. Exp Eye Res 68:475–484CrossRefPubMed Berthoud VM, Bassnett S, Beyer EC (1999) Cultured chicken embryo lens cells resemble differentiating fiber cells in vivo and contain two kinetic pools of connexin 56. Exp Eye Res 68:475–484CrossRefPubMed
Zurück zum Zitat Beyer EC, Kistler J, Paul DL, Goodenough DA (1989) Antisera directed against connexin 43 peptides react with a 43-kD protein localized to gap junctions in myocardium and other tissues. J Cell Biol 108:595–605CrossRefPubMed Beyer EC, Kistler J, Paul DL, Goodenough DA (1989) Antisera directed against connexin 43 peptides react with a 43-kD protein localized to gap junctions in myocardium and other tissues. J Cell Biol 108:595–605CrossRefPubMed
Zurück zum Zitat Bloomfield SA, Xin D, Persky SE (1995) A comparison of receptive field and tracer coupling size of horizontal cells in the rabbit retina. Vis Neurosci 12:985–999PubMed Bloomfield SA, Xin D, Persky SE (1995) A comparison of receptive field and tracer coupling size of horizontal cells in the rabbit retina. Vis Neurosci 12:985–999PubMed
Zurück zum Zitat Breipohl W, Leyendecker M, von Tiesenhausen K, Grus FH (1995) Effects of UV-B on the growth pattern of bovine passage I and II lens epithelial cells in vitro. Ophthalmic Res 27:62–68PubMed Breipohl W, Leyendecker M, von Tiesenhausen K, Grus FH (1995) Effects of UV-B on the growth pattern of bovine passage I and II lens epithelial cells in vitro. Ophthalmic Res 27:62–68PubMed
Zurück zum Zitat Dahm R, van Marle J, Prescott AR, Quinlan RA (1999) Gap junctions containing alpha8-connexin (MP70) in the adult mammalian lens epithelium suggests a re-evaluation of its role in the lens. Exp Eye Res 69:45–56CrossRefPubMed Dahm R, van Marle J, Prescott AR, Quinlan RA (1999) Gap junctions containing alpha8-connexin (MP70) in the adult mammalian lens epithelium suggests a re-evaluation of its role in the lens. Exp Eye Res 69:45–56CrossRefPubMed
Zurück zum Zitat Gao Y, Spray DC (1998) Structural changes in lenses of mice lacking the gap junction protein connexin43. Invest Ophthalmol Vis Sci 39: 1198–1209PubMed Gao Y, Spray DC (1998) Structural changes in lenses of mice lacking the gap junction protein connexin43. Invest Ophthalmol Vis Sci 39: 1198–1209PubMed
Zurück zum Zitat George CH, Kendall JM, Evans WH (1999) Intracellular trafficking pathways in the assembly of connexins into gap junctions. J Biol Chem 274:8678–8685CrossRefPubMed George CH, Kendall JM, Evans WH (1999) Intracellular trafficking pathways in the assembly of connexins into gap junctions. J Biol Chem 274:8678–8685CrossRefPubMed
Zurück zum Zitat Giepmans BN, Verlaan I, Hengeveld T, Janssen H, Calafat J, Falk MM, Moolenaar WH (2001) Gap junction protein connexin 43 interacts directly with microtubules. Curr Biol 11:1364–1368CrossRefPubMed Giepmans BN, Verlaan I, Hengeveld T, Janssen H, Calafat J, Falk MM, Moolenaar WH (2001) Gap junction protein connexin 43 interacts directly with microtubules. Curr Biol 11:1364–1368CrossRefPubMed
Zurück zum Zitat Giessmann D, Theiss C, Breipohl W, Meller K (2003) Microinjection of anti-actin antibodies impaired gap junctional intercellular communication in lens epithelial cells in vitro. Curr Eye Res 27: 157–164CrossRefPubMed Giessmann D, Theiss C, Breipohl W, Meller K (2003) Microinjection of anti-actin antibodies impaired gap junctional intercellular communication in lens epithelial cells in vitro. Curr Eye Res 27: 157–164CrossRefPubMed
Zurück zum Zitat Goldberg GS, Lampe PD, Nicholson BJ (1999) Selective transfer of endogenous metabolites through gap junctions composed of different connexins. Nat Cell Biol 1:457–459CrossRefPubMed Goldberg GS, Lampe PD, Nicholson BJ (1999) Selective transfer of endogenous metabolites through gap junctions composed of different connexins. Nat Cell Biol 1:457–459CrossRefPubMed
Zurück zum Zitat Gong X, Li E, Klier G, Huang Q, Wu Y, Lei H, Kumar NM, Horwitz J, Gilula NB (1997) Disruption of alpha3 connexin gene leads to proteolysis and cataractogenesis in mice. Cell 91:833–843CrossRefPubMed Gong X, Li E, Klier G, Huang Q, Wu Y, Lei H, Kumar NM, Horwitz J, Gilula NB (1997) Disruption of alpha3 connexin gene leads to proteolysis and cataractogenesis in mice. Cell 91:833–843CrossRefPubMed
Zurück zum Zitat Goodenough DA (1979) Lens gap junctions: a structural hypothesis for nonregulated low-resistance intercellular pathways. Invest Ophthalmol Vis Sci 18:1104–1122PubMed Goodenough DA (1979) Lens gap junctions: a structural hypothesis for nonregulated low-resistance intercellular pathways. Invest Ophthalmol Vis Sci 18:1104–1122PubMed
Zurück zum Zitat Goodenough DA (1992) The crystalline lens. A system networked by gap junctional intercellular communication. Semin Cell Biol 3:49–58PubMed Goodenough DA (1992) The crystalline lens. A system networked by gap junctional intercellular communication. Semin Cell Biol 3:49–58PubMed
Zurück zum Zitat Graham RC, Karnovsky MJ (1966) The early stages of absorption of injected horseradish peroxidase in the proximal tubles of mouse kidney; ultrastructural cytochemistry by a new technique. J Histochem Cytochem 14:291–302PubMed Graham RC, Karnovsky MJ (1966) The early stages of absorption of injected horseradish peroxidase in the proximal tubles of mouse kidney; ultrastructural cytochemistry by a new technique. J Histochem Cytochem 14:291–302PubMed
Zurück zum Zitat Hernandez Galindo EE, Theiss C, Steuhl KP, Meller D (2003) Gap junctional communication in microinjected human limbal and peripheral corneal epithelial cells cultured on intact amniotic membrane. Exp Eye Res 76:303–314CrossRefPubMed Hernandez Galindo EE, Theiss C, Steuhl KP, Meller D (2003) Gap junctional communication in microinjected human limbal and peripheral corneal epithelial cells cultured on intact amniotic membrane. Exp Eye Res 76:303–314CrossRefPubMed
Zurück zum Zitat Jiang JX, White TW, Goodenough DA (1995) Changes in connexin expression and distribution during chick lens development. Dev Biol 168:649–661CrossRefPubMed Jiang JX, White TW, Goodenough DA (1995) Changes in connexin expression and distribution during chick lens development. Dev Biol 168:649–661CrossRefPubMed
Zurück zum Zitat Johnson RG, Meyer RA, Li XR, Preus DM, Tan L, Grunenwald H, Paulson AF, Laird DW, Sheridan JD (2002) Gap junctions assemble in the presence of cytoskeletal inhibitors, but enhanced assembly requires microtubules. Exp Cell Res 275:67–80CrossRefPubMed Johnson RG, Meyer RA, Li XR, Preus DM, Tan L, Grunenwald H, Paulson AF, Laird DW, Sheridan JD (2002) Gap junctions assemble in the presence of cytoskeletal inhibitors, but enhanced assembly requires microtubules. Exp Cell Res 275:67–80CrossRefPubMed
Zurück zum Zitat Kinsey VE, Reddy DVN (1964) Studies of the crystalline lens, XI: the relative role of the epithelium and capsule in transport. Invest Ophthalmol 4:104–116 Kinsey VE, Reddy DVN (1964) Studies of the crystalline lens, XI: the relative role of the epithelium and capsule in transport. Invest Ophthalmol 4:104–116
Zurück zum Zitat Kistler JB, Kirkland B, Bullivant S (1985) Identification of a 70,000-D protein in lens membrane junctional domains. J Cell Biol 101:28–35CrossRefPubMed Kistler JB, Kirkland B, Bullivant S (1985) Identification of a 70,000-D protein in lens membrane junctional domains. J Cell Biol 101:28–35CrossRefPubMed
Zurück zum Zitat Laird DW, Puranam KL, Revel JP (1991) Turnover and phosphorylation dynamics of connexin 43 gap junction protein in cultured cardiac myocytes. Biochem J 273:67–72PubMed Laird DW, Puranam KL, Revel JP (1991) Turnover and phosphorylation dynamics of connexin 43 gap junction protein in cultured cardiac myocytes. Biochem J 273:67–72PubMed
Zurück zum Zitat Lauf U, Giepmans BN, Lopez P, Braconnot S, Chen SC, Falk MM (2002) Dynamic trafficking and delivery of connexons to the plasma membrane and accretion to gap junctions in living cells. Proc Natl Acad Sci USA 99:10446–10451CrossRefPubMed Lauf U, Giepmans BN, Lopez P, Braconnot S, Chen SC, Falk MM (2002) Dynamic trafficking and delivery of connexons to the plasma membrane and accretion to gap junctions in living cells. Proc Natl Acad Sci USA 99:10446–10451CrossRefPubMed
Zurück zum Zitat Loewenstein WR (1981) Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev 61:829–913PubMed Loewenstein WR (1981) Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev 61:829–913PubMed
Zurück zum Zitat Lonchampt MO, Laurent M, Coutois Y, Trenchev P, Hughes RC (1976) Microtubules and microfilaments of bovine lens epithelial cells: electron microscopy and immunofluorescence staining with specific antibodies. Exp Eye Res 23:505–518CrossRefPubMed Lonchampt MO, Laurent M, Coutois Y, Trenchev P, Hughes RC (1976) Microtubules and microfilaments of bovine lens epithelial cells: electron microscopy and immunofluorescence staining with specific antibodies. Exp Eye Res 23:505–518CrossRefPubMed
Zurück zum Zitat Martin PEM, Blundell G, Ahmad S, Errington RJ, Evans WH (2001) Multiple pathways in the trafficking and assembly of connexin 26, 32 and 43 into gap junction intercellular communication channels. J Cell Sci 114:3845–3855PubMed Martin PEM, Blundell G, Ahmad S, Errington RJ, Evans WH (2001) Multiple pathways in the trafficking and assembly of connexin 26, 32 and 43 into gap junction intercellular communication channels. J Cell Sci 114:3845–3855PubMed
Zurück zum Zitat Masurovsky EB, Peterson ER, Crain SM, Horwitz SB (1981) Microtubule arrays in taxol-treated mouse dorsal root ganglion-spinal cord cultures. Brain Res 217:392–398CrossRefPubMed Masurovsky EB, Peterson ER, Crain SM, Horwitz SB (1981) Microtubule arrays in taxol-treated mouse dorsal root ganglion-spinal cord cultures. Brain Res 217:392–398CrossRefPubMed
Zurück zum Zitat Masurovsky EB, Peterson ER, Crain SM, Horwitz SB (1983) Morphological alterations in dorsal root ganglion neurons and supporting cells of organotypic mouse spinal cord-ganglion cultures exposed to taxol. Neuroscience 10:491–509CrossRefPubMed Masurovsky EB, Peterson ER, Crain SM, Horwitz SB (1983) Morphological alterations in dorsal root ganglion neurons and supporting cells of organotypic mouse spinal cord-ganglion cultures exposed to taxol. Neuroscience 10:491–509CrossRefPubMed
Zurück zum Zitat Mathias RT, Rae JL, Baldo GJ (1997) Physiological properties of the normal lens. Physiol Rev 77:21–50PubMed Mathias RT, Rae JL, Baldo GJ (1997) Physiological properties of the normal lens. Physiol Rev 77:21–50PubMed
Zurück zum Zitat Meller K (1989) Chromatolysis of dorsal root ganglion cells studied by cryofixation. Cell Tissue Res 256:59–66CrossRef Meller K (1989) Chromatolysis of dorsal root ganglion cells studied by cryofixation. Cell Tissue Res 256:59–66CrossRef
Zurück zum Zitat Meller K (1992) Axoplasmic transport of horseradish peroxidase in single neurons of the dorsal root ganglion studied in vitro by microinjection. Cell Tissue Res 270:139–148CrossRefPubMed Meller K (1992) Axoplasmic transport of horseradish peroxidase in single neurons of the dorsal root ganglion studied in vitro by microinjection. Cell Tissue Res 270:139–148CrossRefPubMed
Zurück zum Zitat Meller K (1994) Intracellular injection of transport markers and antibodies into in vitro cultured nerve cells. Neurosci Protocols 50:1–11 Meller K (1994) Intracellular injection of transport markers and antibodies into in vitro cultured nerve cells. Neurosci Protocols 50:1–11
Zurück zum Zitat Miller TM, Goodenough DA (1985) Gap junction structures after experimental alteration of junctional channel conductance. J Cell Biol 101:1741–1748CrossRefPubMed Miller TM, Goodenough DA (1985) Gap junction structures after experimental alteration of junctional channel conductance. J Cell Biol 101:1741–1748CrossRefPubMed
Zurück zum Zitat Mills SL, Massey SC (2000) A series of biotinylated tracers distinguishes three types of gap junction in retina. J Neurosci 20:8629–8636PubMed Mills SL, Massey SC (2000) A series of biotinylated tracers distinguishes three types of gap junction in retina. J Neurosci 20:8629–8636PubMed
Zurück zum Zitat Musil LS, Beyer EC, Goodenough DA (1990) Expression of the gap junction protein connexin 43 in embryonic chick lens: molecular cloning, ultrastructural localization, and post-translational phosphorylation. J Membr Biol 116:63–175 Musil LS, Beyer EC, Goodenough DA (1990) Expression of the gap junction protein connexin 43 in embryonic chick lens: molecular cloning, ultrastructural localization, and post-translational phosphorylation. J Membr Biol 116:63–175
Zurück zum Zitat Parekh H, Simpkins H (1997) The transport and binding of taxol. Gen Pharmacol 29:167–172PubMed Parekh H, Simpkins H (1997) The transport and binding of taxol. Gen Pharmacol 29:167–172PubMed
Zurück zum Zitat Paul DL, Ebihara L, Takemoto LJ, Swenson KI, Goodenough DA (1991) Connexin 46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes. J Cell Biol 115:1077–1089CrossRefPubMed Paul DL, Ebihara L, Takemoto LJ, Swenson KI, Goodenough DA (1991) Connexin 46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes. J Cell Biol 115:1077–1089CrossRefPubMed
Zurück zum Zitat Paulson AF, Lampe PD, Meyer RA, TenBroek E, Atkinson MM, Walseth TF, Johnson RG (2000) Cyclic AMP and LDL trigger a rapid enhancement in gap junction assembly through a stimulation of connexin trafficking. J Cell Sci 113:3037–3049PubMed Paulson AF, Lampe PD, Meyer RA, TenBroek E, Atkinson MM, Walseth TF, Johnson RG (2000) Cyclic AMP and LDL trigger a rapid enhancement in gap junction assembly through a stimulation of connexin trafficking. J Cell Sci 113:3037–3049PubMed
Zurück zum Zitat Peracchia C (1978) Calcium effects on gap junction structure and cell coupling. Nature 271:669–671PubMed Peracchia C (1978) Calcium effects on gap junction structure and cell coupling. Nature 271:669–671PubMed
Zurück zum Zitat Piatigorsky J, Webster H, Wollberg M (1972) Cell elongation in the cultured embryonic chick lens epithelium with and without protein synthesis. Involvement of microtubules. J Cell Biol 55:82–92CrossRefPubMed Piatigorsky J, Webster H, Wollberg M (1972) Cell elongation in the cultured embryonic chick lens epithelium with and without protein synthesis. Involvement of microtubules. J Cell Biol 55:82–92CrossRefPubMed
Zurück zum Zitat Rup DM, Veenstra RD, Wang HZ, Brink PR, Beyer EC (1993) Chick connexin-56, a novel lens gap junction protein. Molecular cloning and functional expression. J Biol Chem 268:706–712PubMed Rup DM, Veenstra RD, Wang HZ, Brink PR, Beyer EC (1993) Chick connexin-56, a novel lens gap junction protein. Molecular cloning and functional expression. J Biol Chem 268:706–712PubMed
Zurück zum Zitat Saez JC, Connor JA, Spray DC, Bennett MV (1989) Hepatocyte gap junctions are permeable to the second mess inositol 1,4,5-trisphosphate, and to calcium ions. Proc Natl Acad Sci USA 86:2708–2712PubMed Saez JC, Connor JA, Spray DC, Bennett MV (1989) Hepatocyte gap junctions are permeable to the second mess inositol 1,4,5-trisphosphate, and to calcium ions. Proc Natl Acad Sci USA 86:2708–2712PubMed
Zurück zum Zitat Saez JC, Nairn AC, Czernik AJ, Spray DC, Hertzberg EL, Greengard P, Bennett MVL (1990) Phosphorylation of connexin 32, a hepatocyte gap-junction protein, by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin-dependent protein kinase II. Eur J Biochem 192:263–273CrossRefPubMed Saez JC, Nairn AC, Czernik AJ, Spray DC, Hertzberg EL, Greengard P, Bennett MVL (1990) Phosphorylation of connexin 32, a hepatocyte gap-junction protein, by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin-dependent protein kinase II. Eur J Biochem 192:263–273CrossRefPubMed
Zurück zum Zitat Saleh SM, Takemoto DJ (2000) Overexpression of protein kinase C gamma inhibits gap junctional intercellular communication in the lens epithelial cells. Exp Eye Res 71:99–102CrossRefPubMed Saleh SM, Takemoto DJ (2000) Overexpression of protein kinase C gamma inhibits gap junctional intercellular communication in the lens epithelial cells. Exp Eye Res 71:99–102CrossRefPubMed
Zurück zum Zitat Schiff PB, Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA 77:1561–1565PubMed Schiff PB, Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA 77:1561–1565PubMed
Zurück zum Zitat Spray DC, White RL, Campos de Carvalho A, Harris AL, Bennett MVL (1984) Gating of gap junction channels. Biophys J 45:219–230PubMed Spray DC, White RL, Campos de Carvalho A, Harris AL, Bennett MVL (1984) Gating of gap junction channels. Biophys J 45:219–230PubMed
Zurück zum Zitat TenBroek EM, Johnson R, Louis CF (1994) Cell-to-cell communication in a differentiating ovine lens culture system. Invest Ophthalmol Vis Sci 35:215–228PubMed TenBroek EM, Johnson R, Louis CF (1994) Cell-to-cell communication in a differentiating ovine lens culture system. Invest Ophthalmol Vis Sci 35:215–228PubMed
Zurück zum Zitat Theiss C, Meller K (2000) Taxol impairs anterograde axonal transport of microinjected horse radish peroxidase in dorsal root ganglia neurons in vitro. Cell Tissue Res 299:213–224PubMed Theiss C, Meller K (2000) Taxol impairs anterograde axonal transport of microinjected horse radish peroxidase in dorsal root ganglia neurons in vitro. Cell Tissue Res 299:213–224PubMed
Zurück zum Zitat Theiss C, Meller K (2002a) Aluminum impairs gap junctional intercellular communication between astroglial cells in vitro. Cell Tissue Res 310: 143–154CrossRefPubMed Theiss C, Meller K (2002a) Aluminum impairs gap junctional intercellular communication between astroglial cells in vitro. Cell Tissue Res 310: 143–154CrossRefPubMed
Zurück zum Zitat Theiss C, Meller K (2002b) Microinjected anti-actin antibodies impaired cell-communication in astrocytes in vitro. Exp Cell Res 281:197–204CrossRefPubMed Theiss C, Meller K (2002b) Microinjected anti-actin antibodies impaired cell-communication in astrocytes in vitro. Exp Cell Res 281:197–204CrossRefPubMed
Zurück zum Zitat White TW, Bruzzone R, Goodenough DA, Paul DL (1992) Mouse Cx50, a functional member of the connexin family of gap junction proteins, is the lens fibre protein MP70. Mol Biol Cell 3:711–720PubMed White TW, Bruzzone R, Goodenough DA, Paul DL (1992) Mouse Cx50, a functional member of the connexin family of gap junction proteins, is the lens fibre protein MP70. Mol Biol Cell 3:711–720PubMed
Zurück zum Zitat White TW, Goodenough DA, Paul DL (1998) Targeted ablation of connexin50 in mice results in microphthalmia and zonular pulverulent cataracts. J Cell Biol 143:815–825CrossRefPubMed White TW, Goodenough DA, Paul DL (1998) Targeted ablation of connexin50 in mice results in microphthalmia and zonular pulverulent cataracts. J Cell Biol 143:815–825CrossRefPubMed
Zurück zum Zitat Zampighi GA, Simon SA, Hall JE (1992) The specialized junctions of the lens. Int Rev Cytol 136:185–225PubMed Zampighi GA, Simon SA, Hall JE (1992) The specialized junctions of the lens. Int Rev Cytol 136:185–225PubMed
Metadaten
Titel
Decreased gap junctional communication in neurobiotin microinjected lens epithelial cells after taxol treatment
verfasst von
Daniel Giessmann
Carsten Theiss
Winrich Breipohl
Karl Meller
Publikationsdatum
01.06.2005
Erschienen in
Brain Structure and Function / Ausgabe 5/2005
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-005-0456-z

Weitere Artikel der Ausgabe 5/2005

Brain Structure and Function 5/2005 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.