Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 9/2022

12.03.2022 | Original Article

Deep learning–based attenuation correction for whole-body PET — a multi-tracer study with 18F-FDG, 68 Ga-DOTATATE, and 18F-Fluciclovine

verfasst von: Takuya Toyonaga, Dan Shao, Luyao Shi, Jiazhen Zhang, Enette Mae Revilla, David Menard, Joseph Ankrah, Kenji Hirata, Ming-Kai Chen, John A. Onofrey, Yihuan Lu

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 9/2022

Einloggen, um Zugang zu erhalten

Abstract

A novel deep learning (DL)-based attenuation correction (AC) framework was applied to clinical whole-body oncology studies using 18F-FDG, 68 Ga-DOTATATE, and 18F-Fluciclovine. The framework used activity (λ-MLAA) and attenuation (µ-MLAA) maps estimated by the maximum likelihood reconstruction of activity and attenuation (MLAA) algorithm as inputs to a modified U-net neural network with a novel imaging physics-based loss function to learn a CT-derived attenuation map (µ-CT).

Methods

Clinical whole-body PET/CT datasets of 18F-FDG (N = 113), 68 Ga-DOTATATE (N = 76), and 18F-Fluciclovine (N = 90) were used to train and test tracer-specific neural networks. For each tracer, forty subjects were used to train the neural network to predict attenuation maps (µ-DL). µ-DL and µ-MLAA were compared to the gold-standard µ-CT. PET images reconstructed using the OSEM algorithm with µ-DL (OSEMDL) and µ-MLAA (OSEMMLAA) were compared to the CT-based reconstruction (OSEMCT). Tumor regions of interest were segmented by two radiologists and tumor SUV and volume measures were reported, as well as evaluation using conventional image analysis metrics.

Results

µ-DL yielded high resolution and fine detail recovery of the attenuation map, which was superior in quality as compared to µ-MLAA in all metrics for all tracers. Using OSEMCT as the gold-standard, OSEMDL provided more accurate tumor quantification than OSEMMLAA for all three tracers, e.g., error in SUVmax for OSEMMLAA vs. OSEMDL: − 3.6 ± 4.4% vs. − 1.7 ± 4.5% for 18F-FDG (N = 152), − 4.3 ± 5.1% vs. 0.4 ± 2.8% for 68 Ga-DOTATATE (N = 70), and − 7.3 ± 2.9% vs. − 2.8 ± 2.3% for 18F-Fluciclovine (N = 44). OSEMDL also yielded more accurate tumor volume measures than OSEMMLAA, i.e., − 8.4 ± 14.5% (OSEMMLAA) vs. − 3.0 ± 15.0% for 18F-FDG, − 14.1 ± 19.7% vs. 1.8 ± 11.6% for 68 Ga-DOTATATE, and − 15.9 ± 9.1% vs. − 6.4 ± 6.4% for 18F-Fluciclovine.

Conclusions

The proposed framework provides accurate and robust attenuation correction for whole-body 18F-FDG, 68 Ga-DOTATATE and 18F-Fluciclovine in tumor SUV measures as well as tumor volume estimation. The proposed method provides clinically equivalent quality as compared to CT in attenuation correction for the three tracers.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
12.
Zurück zum Zitat Onofrey JA, Casetti-Dinescu DI, Lauritzen AD, Sarkar S, Venkataraman R, Fan RE, et al. Generalizable multi-site training and testing of deep neural networks using image normalization. Biomedical Imaging (ISBI), 2019 IEEE 16th International Symposium on; 2019. p. pp. 1–4. Onofrey JA, Casetti-Dinescu DI, Lauritzen AD, Sarkar S, Venkataraman R, Fan RE, et al. Generalizable multi-site training and testing of deep neural networks using image normalization. Biomedical Imaging (ISBI), 2019 IEEE 16th International Symposium on; 2019. p. pp. 1–4.
13.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. Cham: Springer International Publishing; 2015. p. 234–41. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. Cham: Springer International Publishing; 2015. p. 234–41.
14.
Zurück zum Zitat Shi L, Onofrey JA, Revilla EM, Toyonaga T, Menard D, Ankrah J, et al. A novel loss function incorporating imaging acquisition physics for PET attenuation map generation using deep learning. Cham: Springer International Publishing; 2019. p. 723–31. Shi L, Onofrey JA, Revilla EM, Toyonaga T, Menard D, Ankrah J, et al. A novel loss function incorporating imaging acquisition physics for PET attenuation map generation using deep learning. Cham: Springer International Publishing; 2019. p. 723–31.
16.
Zurück zum Zitat Kingma DP, Ba J. Adam: a method for stochastic optimization. 2014. p. arXiv:1412.6980. Kingma DP, Ba J. Adam: a method for stochastic optimization. 2014. p. arXiv:1412.6980.
18.
Zurück zum Zitat Hirata K, Furuya S, Huang SC, Manabe O, Magota K, Kobayashi K, et al. A semi-automated method to separate tumor from physiological uptakes on FDG PET-CT for efficient generation of training data targeting deep learning. J Nucl Med. 2019;60:supplement 1213.CrossRef Hirata K, Furuya S, Huang SC, Manabe O, Magota K, Kobayashi K, et al. A semi-automated method to separate tumor from physiological uptakes on FDG PET-CT for efficient generation of training data targeting deep learning. J Nucl Med. 2019;60:supplement 1213.CrossRef
31.
Zurück zum Zitat Teimoorisichani M, Sari H, Panin V, Bharkhada D, Rominger A, Conti M. Using LSO background radiation for CT-less attenuation correction of PET data in long axial FOV PET scanners. Journal of Nuclear Medicine. 2021;62:1530-. Teimoorisichani M, Sari H, Panin V, Bharkhada D, Rominger A, Conti M. Using LSO background radiation for CT-less attenuation correction of PET data in long axial FOV PET scanners. Journal of Nuclear Medicine. 2021;62:1530-.
Metadaten
Titel
Deep learning–based attenuation correction for whole-body PET — a multi-tracer study with 18F-FDG, 68 Ga-DOTATATE, and 18F-Fluciclovine
verfasst von
Takuya Toyonaga
Dan Shao
Luyao Shi
Jiazhen Zhang
Enette Mae Revilla
David Menard
Joseph Ankrah
Kenji Hirata
Ming-Kai Chen
John A. Onofrey
Yihuan Lu
Publikationsdatum
12.03.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 9/2022
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-022-05748-2

Weitere Artikel der Ausgabe 9/2022

European Journal of Nuclear Medicine and Molecular Imaging 9/2022 Zur Ausgabe