Skip to main content
Erschienen in:

26.03.2020 | Original Article

Deep learning-based attenuation map generation for myocardial perfusion SPECT

verfasst von: Luyao Shi, John A. Onofrey, Hui Liu, Yi-Hwa Liu, Chi Liu

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 10/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Attenuation correction using CT transmission scanning increases the accuracy of single-photon emission computed tomography (SPECT) and enables quantitative analysis. Current existing SPECT-only systems normally do not support transmission scanning and therefore scans on these systems are susceptible to attenuation artifacts. Moreover, the use of CT scans also increases radiation dose to patients and significant artifacts can occur due to the misregistration between the SPECT and CT scans as a result of patient motion. The purpose of this study is to develop an approach to estimate attenuation maps directly from SPECT emission data using deep learning methods.

Methods

Both photopeak window and scatter window SPECT images were used as inputs to better utilize the underlying attenuation information embedded in the emission data. The CT-based attenuation maps were used as labels with which cardiac SPECT/CT images of 65 patients were included for training and testing. We implemented and evaluated deep fully convolutional neural networks using both standard training and training using an adversarial strategy.

Results

The synthetic attenuation maps were qualitatively and quantitatively consistent with the CT-based attenuation map. The globally normalized mean absolute error (NMAE) between the synthetic and CT-based attenuation maps were 3.60% ± 0.85% among the 25 testing subjects. The SPECT reconstructed images corrected using the CT-based attenuation map and synthetic attenuation map are highly consistent. The NMAE between the reconstructed SPECT images that were corrected using the synthetic and CT-based attenuation maps was 0.26% ± 0.15%, whereas the localized absolute percentage error was 1.33% ± 3.80% in the left ventricle (LV) myocardium and 1.07% ± 2.58% in the LV blood pool.

Conclusion

We developed a deep convolutional neural network to estimate attenuation maps for SPECT directly from the emission data. The proposed method is capable of generating highly reliable attenuation maps to facilitate attenuation correction for SPECT-only scanners for myocardial perfusion imaging.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat van Dijk J, Mouden M, Ottervanger J, van Dalen J, Knollema S, Slump C, et al. Value of attenuation correction in stress-only myocardial perfusion imaging using CZT-SPECT. J Nucl Cardiol. 2017;24:395–401.CrossRef van Dijk J, Mouden M, Ottervanger J, van Dalen J, Knollema S, Slump C, et al. Value of attenuation correction in stress-only myocardial perfusion imaging using CZT-SPECT. J Nucl Cardiol. 2017;24:395–401.CrossRef
3.
Zurück zum Zitat Abdollahi H, Shiri I, Salimi Y, Sarebani M, Mehdinia R, Deevband MR, et al. Radiation dose in cardiac SPECT/CT: an estimation of SSDE and effective dose. Eur J Radiol. 2016;85:2257–61.CrossRef Abdollahi H, Shiri I, Salimi Y, Sarebani M, Mehdinia R, Deevband MR, et al. Radiation dose in cardiac SPECT/CT: an estimation of SSDE and effective dose. Eur J Radiol. 2016;85:2257–61.CrossRef
5.
Zurück zum Zitat Jha AK, Zhu Y, Clarkson E, Kupinski MA, Frey EC. Fisher information analysis of list-mode SPECT emission data for joint estimation of activity and attenuation distribution. arXiv preprint. arXiv:180701767. 2018. Jha AK, Zhu Y, Clarkson E, Kupinski MA, Frey EC. Fisher information analysis of list-mode SPECT emission data for joint estimation of activity and attenuation distribution. arXiv preprint. arXiv:180701767. 2018.
6.
Zurück zum Zitat Wu J, Liu C. Recent advances in cardiac SPECT instrumentation and imaging methods. Phys Med Biol. 2019;64:06TR1. Wu J, Liu C. Recent advances in cardiac SPECT instrumentation and imaging methods. Phys Med Biol. 2019;64:06TR1.
7.
Zurück zum Zitat Shimizu M, Fujii H, Yamawake N, Nishizaki M. Cardiac function changes with switching from the supine to prone position: analysis by quantitative semiconductor gated single-photon emission computed tomography. J Nucl Cardiol. 2015;22:301–7.CrossRef Shimizu M, Fujii H, Yamawake N, Nishizaki M. Cardiac function changes with switching from the supine to prone position: analysis by quantitative semiconductor gated single-photon emission computed tomography. J Nucl Cardiol. 2015;22:301–7.CrossRef
8.
Zurück zum Zitat Pan T-S, King MA, Luo D-S, Dahlberg ST, Villegas BJ. Estimation of attenuation maps from scatter and photopeak window single photon-emission computed tomographic images of technetium 99m-labeled sestamibi. J Nucl Cardiol. 1997;4:42–51.CrossRef Pan T-S, King MA, Luo D-S, Dahlberg ST, Villegas BJ. Estimation of attenuation maps from scatter and photopeak window single photon-emission computed tomographic images of technetium 99m-labeled sestamibi. J Nucl Cardiol. 1997;4:42–51.CrossRef
9.
Zurück zum Zitat Zaidi H, Hasegawa B. Determination of the attenuation map in emission tomography. J Nucl Med. 2003;44:291–315.PubMed Zaidi H, Hasegawa B. Determination of the attenuation map in emission tomography. J Nucl Med. 2003;44:291–315.PubMed
10.
Zurück zum Zitat Núñez M, Prakash V, Vila R, Mut F, Alonso O, Hutton BF. Attenuation correction for lung SPECT: evidence of need and validation of an attenuation map derived from the emission data. Eur J Nucl Med Mol Imaging. 2009;36:1076–89.CrossRef Núñez M, Prakash V, Vila R, Mut F, Alonso O, Hutton BF. Attenuation correction for lung SPECT: evidence of need and validation of an attenuation map derived from the emission data. Eur J Nucl Med Mol Imaging. 2009;36:1076–89.CrossRef
11.
Zurück zum Zitat Pan T-S, King MA, de Vries DJ, Ljungberg M. Segmentation of the body and lungs from Compton scatter and photopeak window data in SPECT: a Monte-Carlo investigation. IEEE Trans Med Imaging. 1996;15:13–24.CrossRef Pan T-S, King MA, de Vries DJ, Ljungberg M. Segmentation of the body and lungs from Compton scatter and photopeak window data in SPECT: a Monte-Carlo investigation. IEEE Trans Med Imaging. 1996;15:13–24.CrossRef
12.
Zurück zum Zitat Cade SC, Arridge S, Evans MJ, Hutton BF. Use of measured scatter data for the attenuation correction of single photon emission tomography without transmission scanning. Med Phys. 2013;40:082506.CrossRef Cade SC, Arridge S, Evans MJ, Hutton BF. Use of measured scatter data for the attenuation correction of single photon emission tomography without transmission scanning. Med Phys. 2013;40:082506.CrossRef
13.
Zurück zum Zitat Gourion D, Noll D, Gantet P, Celler A, Esquerré J-P. Attenuation correction using SPECT emission data only. IEEE Trans Nucl Sci. 2002;49:2172–9.CrossRef Gourion D, Noll D, Gantet P, Celler A, Esquerré J-P. Attenuation correction using SPECT emission data only. IEEE Trans Nucl Sci. 2002;49:2172–9.CrossRef
14.
Zurück zum Zitat Yan Y, Zeng GL. Attenuation map estimation with SPECT emission data only. Int J Imaging Syst Technol. 2009;19:271–6.CrossRef Yan Y, Zeng GL. Attenuation map estimation with SPECT emission data only. Int J Imaging Syst Technol. 2009;19:271–6.CrossRef
15.
Zurück zum Zitat Nuyts J, Dupont P, Stroobants S, Benninck R, Mortelmans L, Suetens P. Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms. IEEE Trans Med Imaging. 1999;18:393–403.CrossRef Nuyts J, Dupont P, Stroobants S, Benninck R, Mortelmans L, Suetens P. Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms. IEEE Trans Med Imaging. 1999;18:393–403.CrossRef
16.
Zurück zum Zitat Krol A, Bowsher JE, Manglos SH, Feiglin DH, Tornai MP, Thomas FD. An EM algorithm for estimating SPECT emission and transmission parameters from emission data only. IEEE Trans Med Imaging. 2001;20:218–32.CrossRef Krol A, Bowsher JE, Manglos SH, Feiglin DH, Tornai MP, Thomas FD. An EM algorithm for estimating SPECT emission and transmission parameters from emission data only. IEEE Trans Med Imaging. 2001;20:218–32.CrossRef
17.
Zurück zum Zitat Nie D, Trullo R, Lian J, Wang L, Petitjean C, Ruan S, et al. Medical image synthesis with deep convolutional adversarial networks. IEEE Trans Biomed Eng. 2018;65:2720–30.CrossRef Nie D, Trullo R, Lian J, Wang L, Petitjean C, Ruan S, et al. Medical image synthesis with deep convolutional adversarial networks. IEEE Trans Biomed Eng. 2018;65:2720–30.CrossRef
18.
Zurück zum Zitat Hwang D, Kang SK, Kim KY, Seo S, Paeng JC, Lee DS, et al. Generation of PET attenuation map for whole-body time-of-flight 18F-FDG PET/MRI using a deep neural network trained with simultaneously reconstructed activity and attenuation maps. J Nucl Med. 2019:jnumed. 118.219493. Hwang D, Kang SK, Kim KY, Seo S, Paeng JC, Lee DS, et al. Generation of PET attenuation map for whole-body time-of-flight 18F-FDG PET/MRI using a deep neural network trained with simultaneously reconstructed activity and attenuation maps. J Nucl Med. 2019:jnumed. 118.219493.
19.
Zurück zum Zitat Han X. MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys. 2017;44:1408–19.CrossRef Han X. MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys. 2017;44:1408–19.CrossRef
20.
Zurück zum Zitat Shi L, Onofrey JA, Revilla EM, Toyonaga T, Menard D, Ankrah J, et al. A novel loss function incorporating imaging acquisition physics for PET attenuation map generation using deep learning. International Conference on Medical image computing and computer-assisted intervention: Springer International Publishing; 2019. p. 723–31. Shi L, Onofrey JA, Revilla EM, Toyonaga T, Menard D, Ankrah J, et al. A novel loss function incorporating imaging acquisition physics for PET attenuation map generation using deep learning. International Conference on Medical image computing and computer-assisted intervention: Springer International Publishing; 2019. p. 723–31.
21.
Zurück zum Zitat Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. Advances in neural information processing systems; 2014. p. 2672–80. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. Advances in neural information processing systems; 2014. p. 2672–80.
22.
Zurück zum Zitat Mao X, Li Q, Xie H, Lau RY, Wang Z, Paul Smolley S. Least squares generative adversarial networks. Proceedings of the IEEE International Conference on Computer Vision; 2017. p. 2794–802. Mao X, Li Q, Xie H, Lau RY, Wang Z, Paul Smolley S. Least squares generative adversarial networks. Proceedings of the IEEE International Conference on Computer Vision; 2017. p. 2794–802.
23.
Zurück zum Zitat Shi L, Onofrey J, Liu H, Liu Y-H, Liu C. Generating attenuation map for SPECT-only systems using generative adversarial networks. J Nucl Med. 2019;60:572. Shi L, Onofrey J, Liu H, Liu Y-H, Liu C. Generating attenuation map for SPECT-only systems using generative adversarial networks. J Nucl Med. 2019;60:572.
24.
Zurück zum Zitat Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601–9.CrossRef Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601–9.CrossRef
25.
Zurück zum Zitat Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 1125–34. Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 1125–34.
26.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. International Conference on Medical image computing and computer-assisted intervention: Springer; 2015. p. 234–41. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. International Conference on Medical image computing and computer-assisted intervention: Springer; 2015. p. 234–41.
27.
Zurück zum Zitat Milletari F, Navab N, Ahmadi S-A. V-net: fully convolutional neural networks for volumetric medical image segmentation. 2016 Fourth International Conference on 3D Vision (3DV): IEEE; 2016. p. 565–71. Milletari F, Navab N, Ahmadi S-A. V-net: fully convolutional neural networks for volumetric medical image segmentation. 2016 Fourth International Conference on 3D Vision (3DV): IEEE; 2016. p. 565–71.
28.
Zurück zum Zitat Onofrey JA, Casetti-Dinescu DI, Lauritzen AD, Sarkar S, Venkataraman R, Fan RE, et al. Generalizable multi-site training and testing of deep neural networks using image normalization. Biomedical Imaging (ISBI), 2019 IEEE 16th International Symposium on; 2019. p. pp. 1–4. Onofrey JA, Casetti-Dinescu DI, Lauritzen AD, Sarkar S, Venkataraman R, Fan RE, et al. Generalizable multi-site training and testing of deep neural networks using image normalization. Biomedical Imaging (ISBI), 2019 IEEE 16th International Symposium on; 2019. p. pp. 1–4.
29.
Zurück zum Zitat Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. Tensorflow: a system for large-scale machine learning. 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16); 2016. p. 265–83. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. Tensorflow: a system for large-scale machine learning. 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16); 2016. p. 265–83.
Metadaten
Titel
Deep learning-based attenuation map generation for myocardial perfusion SPECT
verfasst von
Luyao Shi
John A. Onofrey
Hui Liu
Yi-Hwa Liu
Chi Liu
Publikationsdatum
26.03.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 10/2020
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-020-04746-6