Skip to main content
Erschienen in:

27.07.2024 | Head and Neck

Deep learning-based automatic ASPECTS calculation can improve diagnosis efficiency in patients with acute ischemic stroke: a multicenter study

verfasst von: Jianyong Wei, Kai Shang, Xiaoer Wei, Yueqi Zhu, Yang Yuan, Mengfei Wang, Chengyu Ding, Lisong Dai, Zheng Sun, Xinsheng Mao, Fan Yu, Chunhong Hu, Duanduan Chen, Jie Lu, Yuehua Li

Erschienen in: European Radiology | Ausgabe 2/2025

Einloggen, um Zugang zu erhalten

Abstract

Objectives

The Alberta Stroke Program Early CT Score (ASPECTS), a systematic method for assessing ischemic changes in acute ischemic stroke using non-contrast computed tomography (NCCT), is often interpreted relying on expert experience and can vary between readers. This study aimed to develop a clinically applicable automatic ASPECTS system employing deep learning (DL).

Methods

This study enrolled 1987 NCCT scans that were retrospectively collected from four centers between January 2017 and October 2021. A DL-based system for automated ASPECTS assessment was trained on a development cohort (N = 1767) and validated on an independent test cohort (N = 220). The consensus of experienced physicians was regarded as a reference standard. The validity and reliability of the proposed system were assessed against physicians’ readings. A real-world prospective application study with 13,399 patients was used for system validation in clinical contexts.

Results

The DL-based system achieved an area under the receiver operating characteristic curve (AUC) of 84.97% and an intraclass correlation coefficient (ICC) of 0.84 for overall-level analysis on the test cohort. The system’s diagnostic sensitivity was 94.61% for patients with dichotomized ASPECTS at a threshold of ≥ 6, with substantial agreement (ICC = 0.65) with expert ratings. Combining the system with physicians improved AUC from 67.43 to 89.76%, reducing diagnosis time from 130.6 ± 66.3 s to 33.3 ± 8.3 s (p < 0.001). During the application in clinical contexts, 94.0% (12,591) of scans successfully processed by the system were utilized by clinicians, and 96% of physicians acknowledged significant improvement in work efficiency.

Conclusion

The proposed DL-based system could accurately and rapidly determine ASPECTS, which might facilitate clinical workflow for early intervention.

Clinical relevance statement

The deep learning-based automated ASPECTS evaluation system can accurately and rapidly determine ASPECTS for early intervention in clinical workflows, reducing processing time for physicians by 74.8%, but still requires validation by physicians when in clinical applications.

Key Points

  • The deep learning-based system for ASPECTS quantification has been shown to be non-inferior to expert-rated ASPECTS.
  • This system improved the consistency of ASPECTS evaluation and reduced processing time to 33.3seconds per scan.
  • 94.0% of scans successfully processed by the system were utilized by clinicians during the prospective clinical application.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Collaborators GBDS (2021) Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 20:795–820CrossRef Collaborators GBDS (2021) Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 20:795–820CrossRef
2.
Zurück zum Zitat Group Rospati CW (2020) Brief report on stroke prevention and treatment in China, 2019. Chin J Cerebrovasc Dis 17:5 Group Rospati CW (2020) Brief report on stroke prevention and treatment in China, 2019. Chin J Cerebrovasc Dis 17:5
3.
Zurück zum Zitat Xing L, Jing L, Tian Y et al (2020) High prevalence of stroke and uncontrolled associated risk factors are major public health challenges in rural northeast China: a population-based study. Int J Stroke 15:399–411CrossRefPubMed Xing L, Jing L, Tian Y et al (2020) High prevalence of stroke and uncontrolled associated risk factors are major public health challenges in rural northeast China: a population-based study. Int J Stroke 15:399–411CrossRefPubMed
4.
Zurück zum Zitat Qiu W, Kuang H, Teleg E et al (2020) Machine learning for detecting early infarction in acute stroke with non-contrast-enhanced CT. Radiology 294:638–644CrossRefPubMed Qiu W, Kuang H, Teleg E et al (2020) Machine learning for detecting early infarction in acute stroke with non-contrast-enhanced CT. Radiology 294:638–644CrossRefPubMed
5.
Zurück zum Zitat Barber PA, Demchuk AM, Zhang J, Buchan AM (2000) Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet 355:1670–1674CrossRefPubMed Barber PA, Demchuk AM, Zhang J, Buchan AM (2000) Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet 355:1670–1674CrossRefPubMed
6.
Zurück zum Zitat Pexman JHW, Barber PA, Hill MD et al (2001) Use of the Alberta Stroke Program Early CT Score (ASPECTS) for assessing CT scans in patients with acute stroke. AJNR Am J Neuroradiol 22:1534–1542 Pexman JHW, Barber PA, Hill MD et al (2001) Use of the Alberta Stroke Program Early CT Score (ASPECTS) for assessing CT scans in patients with acute stroke. AJNR Am J Neuroradiol 22:1534–1542
7.
Zurück zum Zitat Aviv RI, Mandelcorn J, Chakraborty S et al (2007) Alberta stroke program early CT scoring of CT perfusion in early stroke visualization and assessment. AJNR Am J Neuroradiol 28:1975–1980CrossRefPubMedPubMedCentral Aviv RI, Mandelcorn J, Chakraborty S et al (2007) Alberta stroke program early CT scoring of CT perfusion in early stroke visualization and assessment. AJNR Am J Neuroradiol 28:1975–1980CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Mak HKF, Yau KKW, Khong PL et al (2003) Hypodensity of >1/3 middle cerebral artery territory versus Alberta Stroke Programme Early CT Score (ASPECTS)—Comparison of two methods of quantitative evaluation of early CT changes in hyperacute ischemic stroke in the community setting. Stroke 34:1194–1196CrossRefPubMed Mak HKF, Yau KKW, Khong PL et al (2003) Hypodensity of >1/3 middle cerebral artery territory versus Alberta Stroke Programme Early CT Score (ASPECTS)—Comparison of two methods of quantitative evaluation of early CT changes in hyperacute ischemic stroke in the community setting. Stroke 34:1194–1196CrossRefPubMed
9.
Zurück zum Zitat Wardlaw JM, Mielke O (2005) Early signs of brain infarction at CT: Observer reliability and outcome after thrombolytic treatment—systematic review. Radiology 235:444–453CrossRefPubMed Wardlaw JM, Mielke O (2005) Early signs of brain infarction at CT: Observer reliability and outcome after thrombolytic treatment—systematic review. Radiology 235:444–453CrossRefPubMed
10.
Zurück zum Zitat Nogueira RG, Jadhav AP, Haussen DC et al (2018) Thrombectomy 6 to 24 h after stroke with a mismatch between deficit and infarct. N Engl J Med 378:11–21CrossRefPubMed Nogueira RG, Jadhav AP, Haussen DC et al (2018) Thrombectomy 6 to 24 h after stroke with a mismatch between deficit and infarct. N Engl J Med 378:11–21CrossRefPubMed
11.
12.
Zurück zum Zitat Berge E, Whiteley W, Audebert H et al (2021) European Stroke Organisation (ESO) guidelines on intravenous thrombolysis for acute ischaemic stroke. Eur Stroke J 6:I–LXIICrossRefPubMedPubMedCentral Berge E, Whiteley W, Audebert H et al (2021) European Stroke Organisation (ESO) guidelines on intravenous thrombolysis for acute ischaemic stroke. Eur Stroke J 6:I–LXIICrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Powers WJ, Rabinstein AA, Ackerson T et al (2018) 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 49:e46–e110CrossRefPubMed Powers WJ, Rabinstein AA, Ackerson T et al (2018) 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 49:e46–e110CrossRefPubMed
14.
Zurück zum Zitat Wilson AT, Dey S, Evans JW, Najm M, Qiu W, Menon BK (2018) Minds treating brains: understanding the interpretation of non-contrast CT ASPECTS in acute ischemic stroke. Expert Rev Cardiovasc Ther 16:143–153CrossRefPubMed Wilson AT, Dey S, Evans JW, Najm M, Qiu W, Menon BK (2018) Minds treating brains: understanding the interpretation of non-contrast CT ASPECTS in acute ischemic stroke. Expert Rev Cardiovasc Ther 16:143–153CrossRefPubMed
15.
Zurück zum Zitat Farzin B, Fahed R, Guilbert F et al (2016) Early CT changes in patients admitted for thrombectomy Intrarater and interrater agreement. Neurology 87:249–256CrossRefPubMedPubMedCentral Farzin B, Fahed R, Guilbert F et al (2016) Early CT changes in patients admitted for thrombectomy Intrarater and interrater agreement. Neurology 87:249–256CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Guberina N, Dietrich U, Radbruch A et al (2018) Detection of early infarction signs with machine learning-based diagnosis by means of the Alberta Stroke Program Early CT score (ASPECTS) in the clinical routine. Neuroradiology 60:889–901CrossRefPubMed Guberina N, Dietrich U, Radbruch A et al (2018) Detection of early infarction signs with machine learning-based diagnosis by means of the Alberta Stroke Program Early CT score (ASPECTS) in the clinical routine. Neuroradiology 60:889–901CrossRefPubMed
18.
Zurück zum Zitat Hoelter P, Muehlen I, Goelitz P, Beuscher V, Schwab S, Doerfler A (2020) Automated ASPECT scoring in acute ischemic stroke: comparison of three software tools. Neuroradiology 62:1231–1238CrossRefPubMed Hoelter P, Muehlen I, Goelitz P, Beuscher V, Schwab S, Doerfler A (2020) Automated ASPECT scoring in acute ischemic stroke: comparison of three software tools. Neuroradiology 62:1231–1238CrossRefPubMed
19.
Zurück zum Zitat Chen W, Wu J, Wei R et al (2022) Improving the diagnosis of acute ischemic stroke on non-contrast CT using deep learning: a multicenter study. Insights Imaging 13:184CrossRefPubMedPubMedCentral Chen W, Wu J, Wei R et al (2022) Improving the diagnosis of acute ischemic stroke on non-contrast CT using deep learning: a multicenter study. Insights Imaging 13:184CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Neuberger U, Nagel S, Pfaff J et al (2020) Impact of slice thickness on clinical utility of automated Alberta Stroke Program Early Computed Tomography Scores. Eur Radiol 30:3137–3145CrossRefPubMed Neuberger U, Nagel S, Pfaff J et al (2020) Impact of slice thickness on clinical utility of automated Alberta Stroke Program Early Computed Tomography Scores. Eur Radiol 30:3137–3145CrossRefPubMed
21.
Zurück zum Zitat Rekik I, Allassonniere S, Carpenter TK, Wardlaw JM (2013) Medical image analysis methods in MR/CT-imaged acute-subacute ischemic stroke lesion: segmentation, prediction and insights into dynamic evolution simulation models. A critical appraisal (1, 164, 2012). Neuroimage Clin 2:600–600CrossRefPubMedPubMedCentral Rekik I, Allassonniere S, Carpenter TK, Wardlaw JM (2013) Medical image analysis methods in MR/CT-imaged acute-subacute ischemic stroke lesion: segmentation, prediction and insights into dynamic evolution simulation models. A critical appraisal (1, 164, 2012). Neuroimage Clin 2:600–600CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Nagel S, Sinha D, Day D et al (2017) e-ASPECTS software is non-inferior to neuroradiologists in applying the ASPECT score to computed tomography scans of acute ischemic stroke patients. Int J Stroke 12:615–622CrossRefPubMed Nagel S, Sinha D, Day D et al (2017) e-ASPECTS software is non-inferior to neuroradiologists in applying the ASPECT score to computed tomography scans of acute ischemic stroke patients. Int J Stroke 12:615–622CrossRefPubMed
23.
Zurück zum Zitat Maegerlein C, Fischer J, Monch S et al (2019) Automated calculation of the Alberta Stroke Program Early CT Score: feasibility and reliability. Radiology 291:140–147CrossRef Maegerlein C, Fischer J, Monch S et al (2019) Automated calculation of the Alberta Stroke Program Early CT Score: feasibility and reliability. Radiology 291:140–147CrossRef
24.
Zurück zum Zitat Herweh C, Ringleb PA, Rauch G et al (2016) Performance of e-ASPECTS software in comparison to that of stroke physicians on assessing CT scans of acute ischemic stroke patients. Int J Stroke 11:438–445CrossRefPubMed Herweh C, Ringleb PA, Rauch G et al (2016) Performance of e-ASPECTS software in comparison to that of stroke physicians on assessing CT scans of acute ischemic stroke patients. Int J Stroke 11:438–445CrossRefPubMed
25.
Zurück zum Zitat Adamou A, Beltsios ET, Bania A et al (2023) Artificial intelligence-driven ASPECTS for the detection of early stroke changes in non-contrast CT: a systematic review and meta-analysis. J Neurointerv Surg 15:e298–e304CrossRefPubMed Adamou A, Beltsios ET, Bania A et al (2023) Artificial intelligence-driven ASPECTS for the detection of early stroke changes in non-contrast CT: a systematic review and meta-analysis. J Neurointerv Surg 15:e298–e304CrossRefPubMed
26.
Zurück zum Zitat Wolff L, Berkhemer OA, van Es A et al (2021) Validation of automated Alberta Stroke Program Early CT Score (ASPECTS) software for detection of early ischemic changes on non-contrast brain CT scans. Neuroradiology 63:491–498CrossRefPubMed Wolff L, Berkhemer OA, van Es A et al (2021) Validation of automated Alberta Stroke Program Early CT Score (ASPECTS) software for detection of early ischemic changes on non-contrast brain CT scans. Neuroradiology 63:491–498CrossRefPubMed
27.
Zurück zum Zitat Cao Z, Xu J, Song B et al (2022) Deep learning derived automated ASPECTS on non-contrast CT scans of acute ischemic stroke patients. Hum Brain Mapp 43:3023–3036CrossRefPubMedPubMedCentral Cao Z, Xu J, Song B et al (2022) Deep learning derived automated ASPECTS on non-contrast CT scans of acute ischemic stroke patients. Hum Brain Mapp 43:3023–3036CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Kuang H, Menon BK, Sohn SI, Qiu W (2021) EIS-Net: Segmenting early infarct and scoring ASPECTS simultaneously on non-contrast CT of patients with acute ischemic stroke. Med Image Anal 70:101984CrossRefPubMed Kuang H, Menon BK, Sohn SI, Qiu W (2021) EIS-Net: Segmenting early infarct and scoring ASPECTS simultaneously on non-contrast CT of patients with acute ischemic stroke. Med Image Anal 70:101984CrossRefPubMed
29.
Zurück zum Zitat Mokin M, Levy EI, Saver JL et al (2017) Predictive value of RAPID assessed perfusion thresholds on final infarct volume in SWIFT PRIME (solitaire with the intention for thrombectomy as primary endovascular treatment). Stroke 48:932–938CrossRefPubMed Mokin M, Levy EI, Saver JL et al (2017) Predictive value of RAPID assessed perfusion thresholds on final infarct volume in SWIFT PRIME (solitaire with the intention for thrombectomy as primary endovascular treatment). Stroke 48:932–938CrossRefPubMed
31.
Zurück zum Zitat Kuang H, Najm M, Chakraborty D et al (2019) Automated ASPECTS on noncontrast CT scans in patients with acute ischemic stroke using machine learning. AJNR Am J Neuroradiol 40:33–38CrossRefPubMedPubMedCentral Kuang H, Najm M, Chakraborty D et al (2019) Automated ASPECTS on noncontrast CT scans in patients with acute ischemic stroke using machine learning. AJNR Am J Neuroradiol 40:33–38CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Li MD, Chang K, Bearce B et al (2020) Siamese neural networks for continuous disease severity evaluation and change detection in medical imaging. NPJ Digit Med 3:48CrossRefPubMedPubMedCentral Li MD, Chang K, Bearce B et al (2020) Siamese neural networks for continuous disease severity evaluation and change detection in medical imaging. NPJ Digit Med 3:48CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Fu F, Wei JY, Zhang M et al (2020) Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network. Nat Commun 11:4829 Fu F, Wei JY, Zhang M et al (2020) Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network. Nat Commun 11:4829
Metadaten
Titel
Deep learning-based automatic ASPECTS calculation can improve diagnosis efficiency in patients with acute ischemic stroke: a multicenter study
verfasst von
Jianyong Wei
Kai Shang
Xiaoer Wei
Yueqi Zhu
Yang Yuan
Mengfei Wang
Chengyu Ding
Lisong Dai
Zheng Sun
Xinsheng Mao
Fan Yu
Chunhong Hu
Duanduan Chen
Jie Lu
Yuehua Li
Publikationsdatum
27.07.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 2/2025
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-024-10960-9

Neu im Fachgebiet Radiologie

Röntgen-Thorax oder LDCT fürs Lungenscreening nach HNSCC?

Personen, die an einem Plattenepithelkarzinom im Kopf-Hals-Bereich erkrankt sind, haben ein erhöhtes Risiko für Metastasen oder zweite Primärmalignome der Lunge. Eine Studie hat untersucht, wie die radiologische Überwachung aussehen sollte.

Statine: Was der G-BA-Beschluss für Praxen bedeutet

Nach dem G-BA-Beschluss zur erweiterten Verordnungsfähigkeit von Lipidsenkern rechnet die DEGAM mit 200 bis 300 neuen Dauerpatienten pro Praxis. Im Interview erläutert Präsidiumsmitglied Erika Baum, wie Hausärztinnen und Hausärzte am besten vorgehen.

Brustdichte nicht mit Multivitaminpräparat-Einnahme assoziiert

Der regelmäßige Gebrauch von Nahrungsergänzungsmitteln scheint nicht die mammografische Brustdichte zu erhöhen. In einer US-amerikanischen Studie jedenfalls ließ sich ein derartiger Zusammenhang nicht bestätigen.

Erhöhte Suizidrate unter US-Ärztinnen

Während der Arztberuf Männer eher vor Suizid schützt, erhöht er das Risiko bei Frauen – zumindest in den USA: Die Suizidinzidenz unter Ärztinnen ist um die Hälfte höher als unter Frauen mit anderen Berufen. Männliche Ärzte töten sich dennoch wesentlich häufiger selbst als weibliche.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.