Skip to main content

20.01.2025 | Abdominal Radiology

Deep learning-based MVIT-MLKA model for accurate classification of pancreatic lesions: a multicenter retrospective cohort study

verfasst von: Hongfan Liao, Cheng Huang, Chunhua Liu, Jiao Zhang, Fengming Tao, Haotian Liu, Hongwei Liang, Xiaoli Hu, Yi Li, Shanxiong Chen, Yongmei Li

Erschienen in: La radiologia medica

Einloggen, um Zugang zu erhalten

Abstract

Background

Accurate differentiation between benign and malignant pancreatic lesions is critical for effective patient management. This study aimed to develop and validate a novel deep learning network using baseline computed tomography (CT) images to predict the classification of pancreatic lesions.

Methods

This retrospective study included 864 patients (422 men, 442 women) with confirmed histopathological results across three medical centers, forming a training cohort, internal testing cohort, and external validation cohort. A novel hybrid model, Multi-Scale Large Kernel Attention with Mobile Vision Transformer (MVIT-MLKA), was developed, integrating CNN and Transformer architectures to classify pancreatic lesions. The model’s performance was compared with traditional machine learning methods and advanced deep learning models. We also evaluated the diagnostic accuracy of radiologists with and without the assistance of the optimal model. Model performance was assessed through discrimination, calibration, and clinical applicability.

Results

The MVIT-MLKA model demonstrated superior performance in classifying pancreatic lesions, achieving an AUC of 0.974 (95% CI 0.967–0.980) in the training set, 0.935 (95% CI 0.915–0.954) in the internal testing set, and 0.924 (95% CI 0.902–0.945) in the external validation set, outperforming traditional models and other deep learning models (P < 0.05). Radiologists aided by the MVIT-MLKA model showed significant improvements in diagnostic accuracy and sensitivity compared to those without model assistance (P < 0.05). Grad-CAM visualization enhanced model interpretability by effectively highlighting key lesion areas.

Conclusion

The MVIT-MLKA model efficiently differentiates between benign and malignant pancreatic lesions, surpassing traditional methods and significantly improving radiologists’ diagnostic performance. The integration of this advanced deep learning model into clinical practice has the potential to reduce diagnostic errors and optimize treatment strategies.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ferlay J, Colombet M, Soerjomataram I et al (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144(8):1941–1953PubMedCrossRef Ferlay J, Colombet M, Soerjomataram I et al (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144(8):1941–1953PubMedCrossRef
2.
Zurück zum Zitat Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424CrossRefPubMed Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424CrossRefPubMed
3.
Zurück zum Zitat Cascinu S, Falconi M, Valentini V et al (2010) Pancreatic cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol Off J Eur Soc Med Oncol 21:v55–v58CrossRef Cascinu S, Falconi M, Valentini V et al (2010) Pancreatic cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol Off J Eur Soc Med Oncol 21:v55–v58CrossRef
4.
Zurück zum Zitat Kanji ZS, Gallinger S (2013) Diagnosis and management of pancreatic cancer. CMAJ Can Med Assoc J 185(14):1219–1226CrossRef Kanji ZS, Gallinger S (2013) Diagnosis and management of pancreatic cancer. CMAJ Can Med Assoc J 185(14):1219–1226CrossRef
5.
Zurück zum Zitat Singh RR, Gopakumar H, Sharma NR (2023) Diagnosis and management of pancreatic cysts: a comprehensive review of the literature. Diagnostics 13(3):550PubMedPubMedCentralCrossRef Singh RR, Gopakumar H, Sharma NR (2023) Diagnosis and management of pancreatic cysts: a comprehensive review of the literature. Diagnostics 13(3):550PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Gardner TB, Park WG, Allen PJ (2024) Diagnosis and management of pancreatic cysts. Gastroenterology 167(3):454–468PubMedCrossRef Gardner TB, Park WG, Allen PJ (2024) Diagnosis and management of pancreatic cysts. Gastroenterology 167(3):454–468PubMedCrossRef
7.
Zurück zum Zitat Chen S, Zhang H, Fang F et al (2023) Characteristics of mass-forming autoimmune pancreatitis commonly misdiagnosed as a malignant tumor. Front Surg 10:1017621PubMedPubMedCentralCrossRef Chen S, Zhang H, Fang F et al (2023) Characteristics of mass-forming autoimmune pancreatitis commonly misdiagnosed as a malignant tumor. Front Surg 10:1017621PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Yang J, Huang J, Zhang Y et al (2023) Contrast-enhanced ultrasound and contrast-enhanced computed tomography for differentiating mass-forming pancreatitis from pancreatic ductal adenocarcinoma: a meta-analysis. Chin Med J 136(17):2028–2036PubMed Yang J, Huang J, Zhang Y et al (2023) Contrast-enhanced ultrasound and contrast-enhanced computed tomography for differentiating mass-forming pancreatitis from pancreatic ductal adenocarcinoma: a meta-analysis. Chin Med J 136(17):2028–2036PubMed
9.
Zurück zum Zitat Bartoli M, Barat M, Dohan A et al (2020) CT and MRI of pancreatic tumors: an update in the era of radiomics. Jpn J Radiol 38(12):1111–1124PubMedCrossRef Bartoli M, Barat M, Dohan A et al (2020) CT and MRI of pancreatic tumors: an update in the era of radiomics. Jpn J Radiol 38(12):1111–1124PubMedCrossRef
10.
Zurück zum Zitat Schima W, Böhm G, Rösch CS et al (2020) Mass-forming pancreatitis versus pancreatic ductal adenocarcinoma: CT and MR imaging for differentiation. Cancer Imaging 20(1):52PubMedPubMedCentralCrossRef Schima W, Böhm G, Rösch CS et al (2020) Mass-forming pancreatitis versus pancreatic ductal adenocarcinoma: CT and MR imaging for differentiation. Cancer Imaging 20(1):52PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Ha J, Choi SH, Byun JH et al (2021) Meta-analysis of CT and MRI for differentiation of autoimmune pancreatitis from pancreatic adenocarcinoma. Eur Radiol 31(5):3427–3438PubMedCrossRef Ha J, Choi SH, Byun JH et al (2021) Meta-analysis of CT and MRI for differentiation of autoimmune pancreatitis from pancreatic adenocarcinoma. Eur Radiol 31(5):3427–3438PubMedCrossRef
12.
Zurück zum Zitat Li D, Ma L, Li J et al (2022) A comprehensive survey on deep learning techniques in CT image quality improvement. Med Biol Eng Comput 60(10):2757–2770PubMedCrossRef Li D, Ma L, Li J et al (2022) A comprehensive survey on deep learning techniques in CT image quality improvement. Med Biol Eng Comput 60(10):2757–2770PubMedCrossRef
14.
Zurück zum Zitat Lv K, Cao X, Du P et al (2022) Radiomics for the detection of microvascular invasion in hepatocellular carcinoma. World J Gastroenterol 28(20):2176–2183PubMedPubMedCentralCrossRef Lv K, Cao X, Du P et al (2022) Radiomics for the detection of microvascular invasion in hepatocellular carcinoma. World J Gastroenterol 28(20):2176–2183PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat de la Pinta C (2022) Radiomics in pancreatic cancer for oncologist: present and future. Hepatobiliary Pancreat Dis Int 21(4):356–361PubMedCrossRef de la Pinta C (2022) Radiomics in pancreatic cancer for oncologist: present and future. Hepatobiliary Pancreat Dis Int 21(4):356–361PubMedCrossRef
16.
Zurück zum Zitat Karmazanovsky G, Gruzdev I, Tikhonova V et al (2021) Computed tomography-based radiomics approach in pancreatic tumors characterization. Radiol Med 126(11):1388–1395CrossRef Karmazanovsky G, Gruzdev I, Tikhonova V et al (2021) Computed tomography-based radiomics approach in pancreatic tumors characterization. Radiol Med 126(11):1388–1395CrossRef
17.
Zurück zum Zitat Baghdadi NA, Malki A, Abdelaliem SF et al (2022) An automated diagnosis and classification of COVID-19 from chest CT images using a transfer learning-based convolutional neural network. Comput Biol Med 144:105383PubMedPubMedCentralCrossRef Baghdadi NA, Malki A, Abdelaliem SF et al (2022) An automated diagnosis and classification of COVID-19 from chest CT images using a transfer learning-based convolutional neural network. Comput Biol Med 144:105383PubMedPubMedCentralCrossRef
18.
19.
Zurück zum Zitat Xie T, Wang X, Zhang Z et al (2021) CT-based radiomics analysis for preoperative diagnosis of pancreatic mucinous cystic neoplasm and atypical serous cystadenomas. Front Oncol 11:621520PubMedPubMedCentralCrossRef Xie T, Wang X, Zhang Z et al (2021) CT-based radiomics analysis for preoperative diagnosis of pancreatic mucinous cystic neoplasm and atypical serous cystadenomas. Front Oncol 11:621520PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Yang J, Guo X, Ou X, Zhang W, Ma X (2019) Discrimination of pancreatic serous cystadenomas from mucinous cystadenomas with CT textural features: based on machine learning. Front Oncol 12(9):494CrossRef Yang J, Guo X, Ou X, Zhang W, Ma X (2019) Discrimination of pancreatic serous cystadenomas from mucinous cystadenomas with CT textural features: based on machine learning. Front Oncol 12(9):494CrossRef
21.
Zurück zum Zitat Yoon SB, Jeon TY, Moon SH et al (2023) Differentiation of autoimmune pancreatitis from pancreatic adenocarcinoma using CT characteristics: a systematic review and meta-analysis. Eur Radiol 33(12):9010–9021PubMedCrossRef Yoon SB, Jeon TY, Moon SH et al (2023) Differentiation of autoimmune pancreatitis from pancreatic adenocarcinoma using CT characteristics: a systematic review and meta-analysis. Eur Radiol 33(12):9010–9021PubMedCrossRef
22.
Zurück zum Zitat Park S, Chu LC, Hruban RH et al (2020) Differentiating autoimmune pancreatitis from pancreatic ductal adenocarcinoma with CT radiomics features. Diagn Interv Imaging 101(9):555–564PubMedCrossRef Park S, Chu LC, Hruban RH et al (2020) Differentiating autoimmune pancreatitis from pancreatic ductal adenocarcinoma with CT radiomics features. Diagn Interv Imaging 101(9):555–564PubMedCrossRef
23.
Zurück zum Zitat Ebrahimian S, Singh R, Netaji A et al (2022) Characterization of benign and malignant pancreatic lesions with DECT quantitative metrics and radiomics. Acad Radiol 29(5):705–713PubMedCrossRef Ebrahimian S, Singh R, Netaji A et al (2022) Characterization of benign and malignant pancreatic lesions with DECT quantitative metrics and radiomics. Acad Radiol 29(5):705–713PubMedCrossRef
24.
Zurück zum Zitat Mathew G, Agha R, Albrecht J et al (2021) STROCSS 2021: strengthening the reporting of cohort, cross-sectional and case-control studies in surgery. Int J Surg 96:106165PubMedCrossRef Mathew G, Agha R, Albrecht J et al (2021) STROCSS 2021: strengthening the reporting of cohort, cross-sectional and case-control studies in surgery. Int J Surg 96:106165PubMedCrossRef
25.
Zurück zum Zitat Chun YS, Pawlik TM, Vauthey JN (2018) 8th edition of the AJCC cancer staging manual: pancreas and hepatobiliary cancers. Ann Surg Oncol 25(4):845–847PubMedCrossRef Chun YS, Pawlik TM, Vauthey JN (2018) 8th edition of the AJCC cancer staging manual: pancreas and hepatobiliary cancers. Ann Surg Oncol 25(4):845–847PubMedCrossRef
26.
Zurück zum Zitat Collins GS, Reitsma JB, Altman DG et al (2015) Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ 350:g7594PubMedCrossRef Collins GS, Reitsma JB, Altman DG et al (2015) Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ 350:g7594PubMedCrossRef
27.
Zurück zum Zitat Huang S, Cai N, Pacheco PP et al (2018) Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genom Proteom 15(1):41–51 Huang S, Cai N, Pacheco PP et al (2018) Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genom Proteom 15(1):41–51
28.
Zurück zum Zitat Zuo D, Yang L, Jin Y et al (2023) Machine learning-based models for the prediction of breast cancer recurrence risk. BMC Med Inform Decis Mak 23(1):276PubMedPubMedCentralCrossRef Zuo D, Yang L, Jin Y et al (2023) Machine learning-based models for the prediction of breast cancer recurrence risk. BMC Med Inform Decis Mak 23(1):276PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Uddin S, Haque I, Lu H et al (2022) Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction. Sci Rep 12(1):6256PubMedPubMedCentralCrossRef Uddin S, Haque I, Lu H et al (2022) Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction. Sci Rep 12(1):6256PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Wang X, Zhang M, Long C et al (2023) Self-attention based neural network for predicting RNA-protein binding sites. IEEE/ACM Trans Comput Biol Bioinform 20(2):1469–1479PubMedCrossRef Wang X, Zhang M, Long C et al (2023) Self-attention based neural network for predicting RNA-protein binding sites. IEEE/ACM Trans Comput Biol Bioinform 20(2):1469–1479PubMedCrossRef
31.
Zurück zum Zitat White J, Ruiz-Serra J, Petrie S et al (2023) Self-attention based vision processing for prosthetic vision. Annu Int Conf IEEE Eng Med Biol Soc 2023:1–4PubMed White J, Ruiz-Serra J, Petrie S et al (2023) Self-attention based vision processing for prosthetic vision. Annu Int Conf IEEE Eng Med Biol Soc 2023:1–4PubMed
32.
Zurück zum Zitat Meng L, Tan W, Ma J et al (2022) Enhancing dynamic ECG heartbeat classification with lightweight transformer model. Artif Intell Med 124:102236PubMedCrossRef Meng L, Tan W, Ma J et al (2022) Enhancing dynamic ECG heartbeat classification with lightweight transformer model. Artif Intell Med 124:102236PubMedCrossRef
33.
Zurück zum Zitat Zhang J, Liu Y, Lei B et al (2023) Graph convolution and self-attention enhanced CNN with domain adaptation for multi-site COVID-19 diagnosis. Annu Int Conf IEEE Eng Med Biol Soc 2023:1–4PubMedPubMedCentral Zhang J, Liu Y, Lei B et al (2023) Graph convolution and self-attention enhanced CNN with domain adaptation for multi-site COVID-19 diagnosis. Annu Int Conf IEEE Eng Med Biol Soc 2023:1–4PubMedPubMedCentral
34.
Zurück zum Zitat Dong A, Liu J, Zhang G et al (2023) Momentum contrast transformer for COVID-19 diagnosis with knowledge distillation. Pattern Recognit 143:109732PubMedPubMedCentralCrossRef Dong A, Liu J, Zhang G et al (2023) Momentum contrast transformer for COVID-19 diagnosis with knowledge distillation. Pattern Recognit 143:109732PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Sadatsafavi M, Saha-Chaudhuri P, Petkau J (2022) Model-based ROC curve: examining the effect of case mix and model calibration on the ROC plot. Med Decis Making 42(4):487–499PubMedCrossRef Sadatsafavi M, Saha-Chaudhuri P, Petkau J (2022) Model-based ROC curve: examining the effect of case mix and model calibration on the ROC plot. Med Decis Making 42(4):487–499PubMedCrossRef
36.
37.
38.
Zurück zum Zitat Dietrich CF, Sahai AV, D’Onofrio M et al (2016) Differential diagnosis of small solid pancreatic lesions. Gastrointest Endosc 84(6):933–940PubMedCrossRef Dietrich CF, Sahai AV, D’Onofrio M et al (2016) Differential diagnosis of small solid pancreatic lesions. Gastrointest Endosc 84(6):933–940PubMedCrossRef
39.
Zurück zum Zitat Sahani DV, Kambadakone A, Macari M et al (2013) Diagnosis and management of cystic pancreatic lesions. AJR Am J Roentgenol 200(2):343–354PubMedCrossRef Sahani DV, Kambadakone A, Macari M et al (2013) Diagnosis and management of cystic pancreatic lesions. AJR Am J Roentgenol 200(2):343–354PubMedCrossRef
40.
Zurück zum Zitat Paramythiotis D, Karlafti E, Tsavdaris D et al (2024) Comparative assessment of endoscopic ultrasound-guided biopsies vs. percutaneous biopsies of pancreatic lesions: a systematic review and meta-analysis of diagnostic performance. J Clin Med 13(11):3108PubMedPubMedCentralCrossRef Paramythiotis D, Karlafti E, Tsavdaris D et al (2024) Comparative assessment of endoscopic ultrasound-guided biopsies vs. percutaneous biopsies of pancreatic lesions: a systematic review and meta-analysis of diagnostic performance. J Clin Med 13(11):3108PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Chai WL, Kuang XF, Yu L et al (2023) Percutaneous ultrasound and endoscopic ultrasound-guided biopsy of solid pancreatic lesions: an analysis of 1074 lesions. Hepatobiliary Pancreat Dis Int 22(3):302–309PubMedCrossRef Chai WL, Kuang XF, Yu L et al (2023) Percutaneous ultrasound and endoscopic ultrasound-guided biopsy of solid pancreatic lesions: an analysis of 1074 lesions. Hepatobiliary Pancreat Dis Int 22(3):302–309PubMedCrossRef
42.
Zurück zum Zitat Gai T, Thai T, Jones M, Jo J, Zheng B (2022) Applying a radiomics-based CAD scheme to classify between malignant and benign pancreatic tumors using CT images. J Xray Sci Technol 30(2):377–388PubMedPubMedCentral Gai T, Thai T, Jones M, Jo J, Zheng B (2022) Applying a radiomics-based CAD scheme to classify between malignant and benign pancreatic tumors using CT images. J Xray Sci Technol 30(2):377–388PubMedPubMedCentral
43.
Zurück zum Zitat Maniar KM, Lassarén P, Rana A et al (2023) Traditional machine learning methods versus deep learning for meningioma classification, grading, outcome prediction, and segmentation: a systematic review and meta-analysis. World Neurosurg 179:e119–e134PubMedCrossRef Maniar KM, Lassarén P, Rana A et al (2023) Traditional machine learning methods versus deep learning for meningioma classification, grading, outcome prediction, and segmentation: a systematic review and meta-analysis. World Neurosurg 179:e119–e134PubMedCrossRef
45.
Zurück zum Zitat Sultan AS, Elgharib MA, Tavares T et al (2020) The use of artificial intelligence, machine learning and deep learning in oncologic histopathology. J Oral Pathol Med 49(9):849–856PubMedCrossRef Sultan AS, Elgharib MA, Tavares T et al (2020) The use of artificial intelligence, machine learning and deep learning in oncologic histopathology. J Oral Pathol Med 49(9):849–856PubMedCrossRef
46.
Zurück zum Zitat Yang R, Chen Y, Sa G et al (2022) CT classification model of pancreatic serous cystic neoplasms and mucinous cystic neoplasms based on a deep neural network. Abdom Radiol 47(1):232–241CrossRef Yang R, Chen Y, Sa G et al (2022) CT classification model of pancreatic serous cystic neoplasms and mucinous cystic neoplasms based on a deep neural network. Abdom Radiol 47(1):232–241CrossRef
Metadaten
Titel
Deep learning-based MVIT-MLKA model for accurate classification of pancreatic lesions: a multicenter retrospective cohort study
verfasst von
Hongfan Liao
Cheng Huang
Chunhua Liu
Jiao Zhang
Fengming Tao
Haotian Liu
Hongwei Liang
Xiaoli Hu
Yi Li
Shanxiong Chen
Yongmei Li
Publikationsdatum
20.01.2025
Verlag
Springer Milan
Erschienen in
La radiologia medica
Print ISSN: 0033-8362
Elektronische ISSN: 1826-6983
DOI
https://doi.org/10.1007/s11547-025-01949-5

Neu im Fachgebiet Radiologie

Hölzerner Fremdkörper in der Orbita? Zuerst eine CT!

Besteht der Verdacht, dass ein Fremdkörper aus Holz in den Orbitalraum eingedrungen ist, spielt die Bildgebung eine entscheidende diagnostische Rolle. Was von CT und MRT zu erwarten ist, hat ein chinesisches Radiologenteam untersucht.

Diagnostik von Rippenfrakturen: KI schlägt Radiologen

Mensch gegen Maschine: Beim Erkennen von Rippenfrakturen in Röntgen- und CT-Aufnahmen entschied sich dieses Duell zugunsten der künstlichen Intelligenz (KI). Die Algorithmen zeigten eine höhere Sensitivität als ihre menschlichen Kollegen.

Ärztinnen überholen Ärzte bei Praxisgründungen

Bei Praxisgründungen haben inzwischen die Frauen deutlich die Nase vorn: Seit zehn Jahren wagen laut apoBank mehr Ärztinnen als Ärzte den Schritt in die Selbstständigkeit. In puncto Finanzierung sind sie aber vorsichtiger als die männlichen Kollegen.

Ambulante Behandlung darf länger dauern als stationäre

Ambulante Behandlungen haben Vorrang vor stationären - auch wenn diese läner dauern. Das hat das Bundessozialgericht klargestellt. Konkret ging es um Liposuktionen der Ober- und Unterschenkel.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.