Skip to main content
Erschienen in:

27.01.2022 | Original Article

Deep learning for image classification in dedicated breast positron emission tomography (dbPET)

verfasst von: Yoko Satoh, Tomoki Imokawa, Tomoyuki Fujioka, Mio Mori, Emi Yamaga, Kanae Takahashi, Keiko Takahashi, Takahiro Kawase, Kazunori Kubota, Ukihide Tateishi, Hiroshi Onishi

Erschienen in: Annals of Nuclear Medicine | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten

Abstract

Objective

This study aimed to investigate and determine the best deep learning (DL) model to predict breast cancer (BC) with dedicated breast positron emission tomography (dbPET) images.

Methods

Of the 1598 women who underwent dbPET examination between April 2015 and August 2020, a total of 618 breasts on 309 examinations for 284 women who were diagnosed with BC or non-BC were analyzed in this retrospective study. The Xception-based DL model was trained to predict BC or non-BC using dbPET images from 458 breasts of 109 BCs and 349 non-BCs, which consisted of mediallateral and craniocaudal maximum intensity projection images, respectively. It was tested using dbPET images from 160 breasts of 43 BC and 117 non-BC. Two expert radiologists and two radiology residents also interpreted them. Sensitivity, specificity, and area under the receiver operating characteristic curves (AUCs) were calculated.

Results

Our DL model had a sensitivity and specificity of 93% and 93%, respectively, while radiologists had a sensitivity and specificity of 77–89% and 79–100%, respectively. Diagnostic performance of our model (AUC = 0.937) tended to be superior to that of residents (AUC = 0.876 and 0.868, p = 0.073 and 0.073), although not significantly different. Moreover, no significant differences were found between the model and experts (AUC = 0.983 and 0.941, p = 0.095 and 0.907).

Conclusions

Our DL model could be applied to dbPET and achieve the same diagnostic ability as that of experts.
Literatur
1.
Zurück zum Zitat Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.CrossRef
2.
Zurück zum Zitat Mori M, Fujioka T, Katsuta L, Tsuchiya J, Kubota K, Kasahara M, et al. Diagnostic performance of time-of-flight PET/CT for evaluating nodal metastasis of the axilla in breast cancer. Nucl Med Commun. 2019;40:958–64.CrossRef Mori M, Fujioka T, Katsuta L, Tsuchiya J, Kubota K, Kasahara M, et al. Diagnostic performance of time-of-flight PET/CT for evaluating nodal metastasis of the axilla in breast cancer. Nucl Med Commun. 2019;40:958–64.CrossRef
3.
4.
Zurück zum Zitat Fujioka T, Kubota K, Kikuchi Y, Tsuchiya J, Tateishi U, Kasaharak M, et al. The feasibility of using 18F-FDG-PET/CT in patients with mucinous breast carcinoma. Nucl Med Commun. 2018;39:1033–8.CrossRef Fujioka T, Kubota K, Kikuchi Y, Tsuchiya J, Tateishi U, Kasaharak M, et al. The feasibility of using 18F-FDG-PET/CT in patients with mucinous breast carcinoma. Nucl Med Commun. 2018;39:1033–8.CrossRef
7.
Zurück zum Zitat Tokuda Y, Yanagawa M, Fujita Y, Honma K, Tanei T, Shimoda M, et al. Prediction of pathological complete response after neoadjuvant chemotherapy in breast cancer: comparison of diagnostic performances of dedicated breast PET, whole-body PET, and dynamic contrast-enhanced MRI. Breast Cancer Res Treat. 2021. https://doi.org/10.1007/s10549-021-06179-7.CrossRefPubMed Tokuda Y, Yanagawa M, Fujita Y, Honma K, Tanei T, Shimoda M, et al. Prediction of pathological complete response after neoadjuvant chemotherapy in breast cancer: comparison of diagnostic performances of dedicated breast PET, whole-body PET, and dynamic contrast-enhanced MRI. Breast Cancer Res Treat. 2021. https://​doi.​org/​10.​1007/​s10549-021-06179-7.CrossRefPubMed
8.
Zurück zum Zitat Satoh Y, Motosugi U, Omiya Y, Onishi H. Unexpected abnormal uptake in the breasts at dedicated breast PET: incidentally detected small cancers or nonmalignant features? AJR Am J Roentgenol. 2019;212:443–9.CrossRef Satoh Y, Motosugi U, Omiya Y, Onishi H. Unexpected abnormal uptake in the breasts at dedicated breast PET: incidentally detected small cancers or nonmalignant features? AJR Am J Roentgenol. 2019;212:443–9.CrossRef
10.
Zurück zum Zitat Satoh Y, Tamada D, Omiya Y, Onishi H, Motosugi U. Diagnostic performance of the support vector machine model for breast cancer on ring-shaped dedicated breast positron emission tomography images. J Comput Assist Tomogr. 2020;44:413–8.CrossRef Satoh Y, Tamada D, Omiya Y, Onishi H, Motosugi U. Diagnostic performance of the support vector machine model for breast cancer on ring-shaped dedicated breast positron emission tomography images. J Comput Assist Tomogr. 2020;44:413–8.CrossRef
11.
Zurück zum Zitat Bitencourt A, Daimiel Naranjo I, Lo Gullo R, Rossi Saccarelli C, Pinker K. AI-enhanced breast imaging: where are we and where are we heading? Eur J Radiol. 2021;142:109882.CrossRef Bitencourt A, Daimiel Naranjo I, Lo Gullo R, Rossi Saccarelli C, Pinker K. AI-enhanced breast imaging: where are we and where are we heading? Eur J Radiol. 2021;142:109882.CrossRef
12.
Zurück zum Zitat Fujioka T, Katsuta L, Kubota K, Mori M, Kikuchi Y, Kato A, et al. Classification of breast masses on ultrasound shear wave elastography using convolutional neural networks. Ultrason Imaging. 2020;42:213–20.CrossRef Fujioka T, Katsuta L, Kubota K, Mori M, Kikuchi Y, Kato A, et al. Classification of breast masses on ultrasound shear wave elastography using convolutional neural networks. Ultrason Imaging. 2020;42:213–20.CrossRef
14.
Zurück zum Zitat Zhang Y, Chen J-H, Lin Y, Chan S, Zhou J, Chow D, et al. Prediction of breast cancer molecular subtypes on DCE-MRI using convolutional neural network with transfer learning between two centers. Eur Radiol. 2021;31:2559–67.CrossRef Zhang Y, Chen J-H, Lin Y, Chan S, Zhou J, Chow D, et al. Prediction of breast cancer molecular subtypes on DCE-MRI using convolutional neural network with transfer learning between two centers. Eur Radiol. 2021;31:2559–67.CrossRef
15.
Zurück zum Zitat Fujioka T, Kubota K, Mori M, Kikuchi Y, Katsuta L, Kasahara M, et al. Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network. Jpn J Radiol. 2019;37:466–72.CrossRef Fujioka T, Kubota K, Mori M, Kikuchi Y, Katsuta L, Kasahara M, et al. Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network. Jpn J Radiol. 2019;37:466–72.CrossRef
17.
Zurück zum Zitat Sechopoulos I, Mann RM. Stand-alone artificial intelligence - the future of breast cancer screening? Breast. 2020;49:254–60.CrossRef Sechopoulos I, Mann RM. Stand-alone artificial intelligence - the future of breast cancer screening? Breast. 2020;49:254–60.CrossRef
18.
Zurück zum Zitat Tsuda T, Murayama H, Kitamura K, Yamaya T, Yoshida E, Omura T, et al. A four-layer depth of interaction detector block for small animal PET. IEEE Nucl Sci Symp Conf Rec. 2003;3:1789–93. Tsuda T, Murayama H, Kitamura K, Yamaya T, Yoshida E, Omura T, et al. A four-layer depth of interaction detector block for small animal PET. IEEE Nucl Sci Symp Conf Rec. 2003;3:1789–93.
20.
Zurück zum Zitat Bailey DL, Meikle SR. A convolution-subtraction scatter correction method for 3D PET. Phys Med Biol. 1994;39:411–24.CrossRef Bailey DL, Meikle SR. A convolution-subtraction scatter correction method for 3D PET. Phys Med Biol. 1994;39:411–24.CrossRef
21.
Zurück zum Zitat Barr RG, Zhang Z, Cormack JB, Mendelson EB, Berg WA. Probably benign lesions at screening breast US in a population with elevated risk: prevalence and rate of malignancy in the ACRIN 6666 trial. Radiology. 2013;269:701–12.CrossRef Barr RG, Zhang Z, Cormack JB, Mendelson EB, Berg WA. Probably benign lesions at screening breast US in a population with elevated risk: prevalence and rate of malignancy in the ACRIN 6666 trial. Radiology. 2013;269:701–12.CrossRef
22.
Zurück zum Zitat Fuller MS, Lee CI, Elmore JG. Breast cancer screening: an evidence-based update. Med Clin North Am. 2015;99:451–68.CrossRef Fuller MS, Lee CI, Elmore JG. Breast cancer screening: an evidence-based update. Med Clin North Am. 2015;99:451–68.CrossRef
27.
Zurück zum Zitat Yan Y, Chen M, Shyu M-L, Chen S-C. Deep learning for imbalanced multimedia data classification. In: 2015 IEEE International Symposium on Multimedia (ISM). 2015. p. 483–8. Yan Y, Chen M, Shyu M-L, Chen S-C. Deep learning for imbalanced multimedia data classification. In: 2015 IEEE International Symposium on Multimedia (ISM). 2015. p. 483–8.
29.
Zurück zum Zitat McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577:89–94.CrossRef McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577:89–94.CrossRef
30.
Zurück zum Zitat Magny SJ, Shikhman R, Keppke AL. Breast imaging reporting and data system. Treasure Island (FL): StatPearls Publishing; 2020. Magny SJ, Shikhman R, Keppke AL. Breast imaging reporting and data system. Treasure Island (FL): StatPearls Publishing; 2020.
31.
Zurück zum Zitat Lee KJ, Ryoo I, Choi D, Sunwoo L, You S-H, Jung HN. Performance of deep learning to detect mastoiditis using multiple conventional radiographs of mastoid. PLoS ONE. 2020;15: e0241796.CrossRef Lee KJ, Ryoo I, Choi D, Sunwoo L, You S-H, Jung HN. Performance of deep learning to detect mastoiditis using multiple conventional radiographs of mastoid. PLoS ONE. 2020;15: e0241796.CrossRef
32.
Zurück zum Zitat Zhang C, Zhao J, Niu J, Li D. New convolutional neural network model for screening and diagnosis of mammograms. PLoS ONE. 2020;15: e0237674.CrossRef Zhang C, Zhao J, Niu J, Li D. New convolutional neural network model for screening and diagnosis of mammograms. PLoS ONE. 2020;15: e0237674.CrossRef
33.
Zurück zum Zitat Wu N, Jastrzębski S, Park J, Moy L, Cho K, Geras KJ. Improving the ability of deep neural networks to use information from multiple views in breast cancer screening. Proc Mach Learn Res. 2020;121:827–42.PubMedPubMedCentral Wu N, Jastrzębski S, Park J, Moy L, Cho K, Geras KJ. Improving the ability of deep neural networks to use information from multiple views in breast cancer screening. Proc Mach Learn Res. 2020;121:827–42.PubMedPubMedCentral
Metadaten
Titel
Deep learning for image classification in dedicated breast positron emission tomography (dbPET)
verfasst von
Yoko Satoh
Tomoki Imokawa
Tomoyuki Fujioka
Mio Mori
Emi Yamaga
Kanae Takahashi
Keiko Takahashi
Takahiro Kawase
Kazunori Kubota
Ukihide Tateishi
Hiroshi Onishi
Publikationsdatum
27.01.2022
Verlag
Springer Singapore
Erschienen in
Annals of Nuclear Medicine / Ausgabe 4/2022
Print ISSN: 0914-7187
Elektronische ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-022-01719-7