Skip to main content
Erschienen in:

22.01.2022 | Imaging Informatics and Artificial Intelligence

Deep learning image reconstruction algorithm for abdominal multidetector CT at different tube voltages: assessment of image quality and radiation dose in a phantom study

verfasst von: Hye Joo Park, Seo-Youn Choi, Ji Eun Lee, Sanghyeok Lim, Min Hee Lee, Boem Ha Yi, Jang Gyu Cha, Ji Hye Min, Bora Lee, Yunsub Jung

Erschienen in: European Radiology | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To compare the image quality and radiation dose of a deep learning image reconstruction (DLIR) algorithm compared with iterative reconstruction (IR) and filtered back projection (FBP) at different tube voltages and tube currents.

Materials and methods

A customized body phantom was scanned at different tube voltages (120, 100, and 80 kVp) with different tube currents (200, 100, and 60 mA). The CT datasets were reconstructed with FBP, hybrid IR (30% and 50%), and DLIR (low, medium, and high levels). The reference image was set as an image taken with FBP at 120 kVp/200 mA. The image noise, contrast-to-noise ratio (CNR), sharpness, artifacts, and overall image quality were assessed in each scan both qualitatively and quantitatively. The radiation dose was also evaluated with the volume CT dose index (CTDIvol) for each dose scan.

Results

In qualitative and quantitative analyses, compared with reference images, low-dose CT with DLIR significantly reduced the noise and artifacts and improved the overall image quality, even with decreased sharpness (p < 0.05). Despite the reduction of image sharpness, low-dose CT with DLIR could maintain the image quality comparable to routine-dose CT with FBP, especially when using the medium strength level.

Conclusion

The new DLIR algorithm reduced noise and artifacts and improved overall image quality, compared to FBP and hybrid IR. Despite reduced image sharpness in CT images of DLIR algorithms, low-dose CT with DLIR seems to have an overall greater potential for dose optimization.

Key Points

Using deep learning image reconstruction (DLIR) algorithms, image quality was maintained even with a radiation dose reduced by approximately 70%.
DLIR algorithms yielded lower image noise, higher contrast-to-noise ratios, and higher overall image quality than FBP and hybrid IR, both subjectively and objectively.
DLIR algorithms can provide a better image quality, much better than FBP and even better than hybrid IR, while facilitating a reduction in radiation dose.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kaza RK, Platt JF, Goodsitt MM et al (2014) Emerging techniques for dose optimization in abdominal CT. Radiographics 34:4–17CrossRef Kaza RK, Platt JF, Goodsitt MM et al (2014) Emerging techniques for dose optimization in abdominal CT. Radiographics 34:4–17CrossRef
2.
Zurück zum Zitat Nakayama Y, Awai K, Funama Y et al (2005) Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology 237:945–951CrossRef Nakayama Y, Awai K, Funama Y et al (2005) Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology 237:945–951CrossRef
3.
Zurück zum Zitat Schindera ST, Diedrichsen L, Müller HC et al (2011) Iterative reconstruction algorithm for abdominal multidetector CT at different tube voltages: assessment of diagnostic accuracy, image quality, and radiation dose in a phantom study. Radiology 260:454–462CrossRef Schindera ST, Diedrichsen L, Müller HC et al (2011) Iterative reconstruction algorithm for abdominal multidetector CT at different tube voltages: assessment of diagnostic accuracy, image quality, and radiation dose in a phantom study. Radiology 260:454–462CrossRef
4.
Zurück zum Zitat Geyer LL, Schoepf UJ, Meinel FG et al (2015) State of the art: iterative CT reconstruction techniques. Radiology 276:339–357CrossRef Geyer LL, Schoepf UJ, Meinel FG et al (2015) State of the art: iterative CT reconstruction techniques. Radiology 276:339–357CrossRef
5.
Zurück zum Zitat Silva AC, Lawder HJ, Hara A et al (2010) Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. AJR Am J Roentgenol 194:191–199 Silva AC, Lawder HJ, Hara A et al (2010) Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. AJR Am J Roentgenol 194:191–199
6.
Zurück zum Zitat Singh S, Kalra MK, Hsieh J et al (2010) Abdominal CT: comparison of adaptive statistical iterative and filtered back projection reconstruction techniques. Radiology 257:373–383CrossRef Singh S, Kalra MK, Hsieh J et al (2010) Abdominal CT: comparison of adaptive statistical iterative and filtered back projection reconstruction techniques. Radiology 257:373–383CrossRef
7.
Zurück zum Zitat Leipsic J, Labounty TM, Heilbron B et al (2010) Adaptive statistical iterative reconstruction: assessment of image noise and image quality in coronary CT angiography. AJR Am J Roentgenol 195:649–654CrossRef Leipsic J, Labounty TM, Heilbron B et al (2010) Adaptive statistical iterative reconstruction: assessment of image noise and image quality in coronary CT angiography. AJR Am J Roentgenol 195:649–654CrossRef
8.
Zurück zum Zitat Böning G, Schäfer M, Grupp U et al (2015) Comparison of applied dose and image quality in staging CT of neuroendocrine tumor patients using standard filtered back projection and adaptive statistical iterative reconstruction. Eur J Radiol 84:1601–1607CrossRef Böning G, Schäfer M, Grupp U et al (2015) Comparison of applied dose and image quality in staging CT of neuroendocrine tumor patients using standard filtered back projection and adaptive statistical iterative reconstruction. Eur J Radiol 84:1601–1607CrossRef
9.
Zurück zum Zitat Vachha B, Brodoefel H, Wilcox C et al (2013) Radiation dose reduction in soft tissue neck CT using adaptive statistical iterative reconstruction (ASIR). Eur J Radiol 82:2222–2226CrossRef Vachha B, Brodoefel H, Wilcox C et al (2013) Radiation dose reduction in soft tissue neck CT using adaptive statistical iterative reconstruction (ASIR). Eur J Radiol 82:2222–2226CrossRef
10.
Zurück zum Zitat Greffier J, Hamard A, Pereira F et al (2020) Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study. Eur Radiol 30(7):3951–3959 Greffier J, Hamard A, Pereira F et al (2020) Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study. Eur Radiol 30(7):3951–3959
12.
Zurück zum Zitat Jensen CT, Liu X, Tamm EP et al (2020) Image quality assessment of abdominal CT by use of new deep learning image reconstruction: initial experience. AJR Am J Roentgenol 215(1):50–57 Jensen CT, Liu X, Tamm EP et al (2020) Image quality assessment of abdominal CT by use of new deep learning image reconstruction: initial experience. AJR Am J Roentgenol 215(1):50–57
13.
Zurück zum Zitat Singh R, Digumarthy SR, Muse VV et al (2020) Image quality and lesion detection on deep learning reconstruction and iterative reconstruction of submillisievert chest and abdominal CT. AJR Am J Roentgenol 214:566–573CrossRef Singh R, Digumarthy SR, Muse VV et al (2020) Image quality and lesion detection on deep learning reconstruction and iterative reconstruction of submillisievert chest and abdominal CT. AJR Am J Roentgenol 214:566–573CrossRef
14.
Zurück zum Zitat Akagi M, Nakamura Y, Higaki T et al (2019) Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT. Eur Radiol 29:6163–6171CrossRef Akagi M, Nakamura Y, Higaki T et al (2019) Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT. Eur Radiol 29:6163–6171CrossRef
15.
Zurück zum Zitat Tatsugami F, Higaki T, Nakamura Y et al (2019) Deep learning-based image restoration algorithm for coronary CT angiography. Eur Radiol 29:5322–5329CrossRef Tatsugami F, Higaki T, Nakamura Y et al (2019) Deep learning-based image restoration algorithm for coronary CT angiography. Eur Radiol 29:5322–5329CrossRef
16.
Zurück zum Zitat Shin YJ, Chang W, Ye JC et al (2020) Low-dose abdominal CT using a deep learning-based denoising algorithm: a comparison with CT reconstructed with filtered back projection or iterative reconstruction algorithm. Korean J Radiol 21:356–364CrossRef Shin YJ, Chang W, Ye JC et al (2020) Low-dose abdominal CT using a deep learning-based denoising algorithm: a comparison with CT reconstructed with filtered back projection or iterative reconstruction algorithm. Korean J Radiol 21:356–364CrossRef
18.
Zurück zum Zitat Kim JH, Yoon HJ, Lee E et al (2021) Validation of deep-learning image reconstruction for low-dose chest computed tomography scan: emphasis on image quality and noise. Korean J Radiol 22:131–138CrossRef Kim JH, Yoon HJ, Lee E et al (2021) Validation of deep-learning image reconstruction for low-dose chest computed tomography scan: emphasis on image quality and noise. Korean J Radiol 22:131–138CrossRef
19.
Zurück zum Zitat Hata A, Yanagawa M, Yoshida Y et al (2021) The image quality of deep-learning image reconstruction of chest CT images on a mediastinal window setting. Clin Radiol 76:155.e115-155.e123CrossRef Hata A, Yanagawa M, Yoshida Y et al (2021) The image quality of deep-learning image reconstruction of chest CT images on a mediastinal window setting. Clin Radiol 76:155.e115-155.e123CrossRef
20.
Zurück zum Zitat Sagara Y, Hara AK, Pavlicek W et al (2010) Abdominal CT: comparison of low-dose CT with adaptive statistical iterative reconstruction and routine-dose CT with filtered back projection in 53 patients. AJR Am J Roentgenol 195:713–719CrossRef Sagara Y, Hara AK, Pavlicek W et al (2010) Abdominal CT: comparison of low-dose CT with adaptive statistical iterative reconstruction and routine-dose CT with filtered back projection in 53 patients. AJR Am J Roentgenol 195:713–719CrossRef
21.
Zurück zum Zitat Wang Z, Bovik AC, Sheikh HR et al (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612CrossRef Wang Z, Bovik AC, Sheikh HR et al (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612CrossRef
22.
Zurück zum Zitat Joemai RMS, Geleijns J (2017) Assessment of structural similarity in CT using filtered backprojection and iterative reconstruction: a phantom study with 3D printed lung vessels. Br J Radiol 90:20160519CrossRef Joemai RMS, Geleijns J (2017) Assessment of structural similarity in CT using filtered backprojection and iterative reconstruction: a phantom study with 3D printed lung vessels. Br J Radiol 90:20160519CrossRef
23.
Zurück zum Zitat Peng J, Shi C, Laugeman E et al (2020) Implementation of the structural SIMilarity (SSIM) index as a quantitative evaluation tool for dose distribution error detection. Med Phys 47:1907–1919CrossRef Peng J, Shi C, Laugeman E et al (2020) Implementation of the structural SIMilarity (SSIM) index as a quantitative evaluation tool for dose distribution error detection. Med Phys 47:1907–1919CrossRef
24.
Zurück zum Zitat Renieblas GP, Nogués AT, González AM et al (2017) Structural similarity index family for image quality assessment in radiological images. J Med Imaging (Bellingham) 4:035501CrossRef Renieblas GP, Nogués AT, González AM et al (2017) Structural similarity index family for image quality assessment in radiological images. J Med Imaging (Bellingham) 4:035501CrossRef
25.
Zurück zum Zitat Pauchard B, Higashigaito K, Lamri-Senouci A et al (2017) Iterative reconstructions in reduced-dose CT: which type ensures diagnostic image quality in young oncology patients? Acad Radiol 24:1114–1124CrossRef Pauchard B, Higashigaito K, Lamri-Senouci A et al (2017) Iterative reconstructions in reduced-dose CT: which type ensures diagnostic image quality in young oncology patients? Acad Radiol 24:1114–1124CrossRef
26.
Zurück zum Zitat Greffier J, Macri F, Larbi A et al (2016) Dose reduction with iterative reconstruction in multi-detector CT: what is the impact on deformation of circular structures in phantom study? Diagn Interv Imaging 97:187–196CrossRef Greffier J, Macri F, Larbi A et al (2016) Dose reduction with iterative reconstruction in multi-detector CT: what is the impact on deformation of circular structures in phantom study? Diagn Interv Imaging 97:187–196CrossRef
27.
Zurück zum Zitat Al-Kadi OS (2010) Assessment of texture measures susceptibility to noise in conventional and contrast enhanced computed tomography lung tumour images. Comput Med Imaging Graph 34:494–503CrossRef Al-Kadi OS (2010) Assessment of texture measures susceptibility to noise in conventional and contrast enhanced computed tomography lung tumour images. Comput Med Imaging Graph 34:494–503CrossRef
28.
Zurück zum Zitat Chiang MC, Boult TE (1997) Local blur estimation and super-resolution. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, San Juan, PR 821–826 Chiang MC, Boult TE (1997) Local blur estimation and super-resolution. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, San Juan, PR 821–826
29.
Zurück zum Zitat Marichal X, Ma WY, Zhang HJ (1999) Blur determination in the compressed domain using DCT information. Proceedings of the IEEE International Conference on Image Processing. IEEE, Kobe, JP 386–390 Marichal X, Ma WY, Zhang HJ (1999) Blur determination in the compressed domain using DCT information. Proceedings of the IEEE International Conference on Image Processing. IEEE, Kobe, JP 386–390
30.
Zurück zum Zitat Marziliano P, Dufaux F, Winkler S et al (2002) A no-reference perceptual blur metric. Proceedings of the IEEE International Conference on Image Processing. IEEE, Rochester, NY 57–60 Marziliano P, Dufaux F, Winkler S et al (2002) A no-reference perceptual blur metric. Proceedings of the IEEE International Conference on Image Processing. IEEE, Rochester, NY 57–60
31.
Zurück zum Zitat Caviedes J, Gurbuz S (2002) No-reference sharpness metric based on local edge kurtosis. Proceedings of the IEEE International Conference on Image Processing. IEEE, Rochester, NY 53–56 Caviedes J, Gurbuz S (2002) No-reference sharpness metric based on local edge kurtosis. Proceedings of the IEEE International Conference on Image Processing. IEEE, Rochester, NY 53–56
32.
Zurück zum Zitat Feger S, Kendziorra C, Lukas S et al (2018) Effect of iterative reconstruction and temporal averaging on contour sharpness in dynamic myocardial CT perfusion: sub-analysis of the prospective 4D CT perfusion pilot study. PLoS One 13:e0205922CrossRef Feger S, Kendziorra C, Lukas S et al (2018) Effect of iterative reconstruction and temporal averaging on contour sharpness in dynamic myocardial CT perfusion: sub-analysis of the prospective 4D CT perfusion pilot study. PLoS One 13:e0205922CrossRef
33.
Zurück zum Zitat Shieh CC, Kipritidis J, O’Brien RT et al (2014) Image quality in thoracic 4D cone-beam CT: a sensitivity analysis of respiratory signal, binning method, reconstruction algorithm, and projection angular spacing. Med Phys 41:041912CrossRef Shieh CC, Kipritidis J, O’Brien RT et al (2014) Image quality in thoracic 4D cone-beam CT: a sensitivity analysis of respiratory signal, binning method, reconstruction algorithm, and projection angular spacing. Med Phys 41:041912CrossRef
34.
Zurück zum Zitat Harris MA, Huckle J, Anthony D et al (2017) The acceptability of iterative reconstruction algorithms in head CT: an assessment of sinogram affirmed iterative reconstruction (SAFIRE) vs. filtered back projection (FBP) using phantoms. J Med Imaging Radiat Sci 48:259–269CrossRef Harris MA, Huckle J, Anthony D et al (2017) The acceptability of iterative reconstruction algorithms in head CT: an assessment of sinogram affirmed iterative reconstruction (SAFIRE) vs. filtered back projection (FBP) using phantoms. J Med Imaging Radiat Sci 48:259–269CrossRef
35.
Zurück zum Zitat Nakamura Y, Higaki T, Tatsugami F et al (2019) Deep learning–based CT image reconstruction: initial evaluation targeting hypovascular hepatic metastases. Radiol Artif Intell 1:e180011CrossRef Nakamura Y, Higaki T, Tatsugami F et al (2019) Deep learning–based CT image reconstruction: initial evaluation targeting hypovascular hepatic metastases. Radiol Artif Intell 1:e180011CrossRef
36.
Zurück zum Zitat Verdun FR, Racine D, Ott JG et al (2015) Image quality in CT: from physical measurements to model observers. Phys Med 31:823–843CrossRef Verdun FR, Racine D, Ott JG et al (2015) Image quality in CT: from physical measurements to model observers. Phys Med 31:823–843CrossRef
37.
Zurück zum Zitat Eldevik K, Nordhøy W, Skretting A (2010) Relationship between sharpness and noise in CT images reconstructed with different kernels. Radiat Prot Dosimetry 139:430–433CrossRef Eldevik K, Nordhøy W, Skretting A (2010) Relationship between sharpness and noise in CT images reconstructed with different kernels. Radiat Prot Dosimetry 139:430–433CrossRef
38.
Zurück zum Zitat Kayugawa A, Ohkubo M, Wada S (2013) Accurate determination of CT point-spread-function with high precision. J Appl Clin Med Phys 14:3905CrossRef Kayugawa A, Ohkubo M, Wada S (2013) Accurate determination of CT point-spread-function with high precision. J Appl Clin Med Phys 14:3905CrossRef
39.
Zurück zum Zitat Higaki T, Nakamura Y, Zhou J et al (2020) Deep learning reconstruction at CT: phantom study of the image characteristics. Acad Radiol 27:82–87CrossRef Higaki T, Nakamura Y, Zhou J et al (2020) Deep learning reconstruction at CT: phantom study of the image characteristics. Acad Radiol 27:82–87CrossRef
40.
Zurück zum Zitat Wu D, Kim K, Li Q (2019) Computationally efficient deep neural network for computed tomography image reconstruction. Med Phys 46:4763–4776CrossRef Wu D, Kim K, Li Q (2019) Computationally efficient deep neural network for computed tomography image reconstruction. Med Phys 46:4763–4776CrossRef
41.
Zurück zum Zitat Buty M, Xu Z, Wu A et al (2017) Quantitative image quality comparison of reduced- and standard-dose dual-energy multiphase chest, abdomen, and pelvis CT. Tomography 3:114–122CrossRef Buty M, Xu Z, Wu A et al (2017) Quantitative image quality comparison of reduced- and standard-dose dual-energy multiphase chest, abdomen, and pelvis CT. Tomography 3:114–122CrossRef
Metadaten
Titel
Deep learning image reconstruction algorithm for abdominal multidetector CT at different tube voltages: assessment of image quality and radiation dose in a phantom study
verfasst von
Hye Joo Park
Seo-Youn Choi
Ji Eun Lee
Sanghyeok Lim
Min Hee Lee
Boem Ha Yi
Jang Gyu Cha
Ji Hye Min
Bora Lee
Yunsub Jung
Publikationsdatum
22.01.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 6/2022
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-021-08459-8

Neu im Fachgebiet Radiologie

Hölzerner Fremdkörper in der Orbita? Zuerst eine CT!

Besteht der Verdacht, dass ein Fremdkörper aus Holz in den Orbitalraum eingedrungen ist, spielt die Bildgebung eine entscheidende diagnostische Rolle. Was von CT und MRT zu erwarten ist, hat ein chinesisches Radiologenteam untersucht.

Diagnostik von Rippenfrakturen: KI schlägt Radiologen

Mensch gegen Maschine: Beim Erkennen von Rippenfrakturen in Röntgen- und CT-Aufnahmen entschied sich dieses Duell zugunsten der künstlichen Intelligenz (KI). Die Algorithmen zeigten eine höhere Sensitivität als ihre menschlichen Kollegen.

Ärztinnen überholen Ärzte bei Praxisgründungen

Bei Praxisgründungen haben inzwischen die Frauen deutlich die Nase vorn: Seit zehn Jahren wagen laut apoBank mehr Ärztinnen als Ärzte den Schritt in die Selbstständigkeit. In puncto Finanzierung sind sie aber vorsichtiger als die männlichen Kollegen.

Ambulante Behandlung darf länger dauern als stationäre

Ambulante Behandlungen haben Vorrang vor stationären - auch wenn diese läner dauern. Das hat das Bundessozialgericht klargestellt. Konkret ging es um Liposuktionen der Ober- und Unterschenkel.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.