Skip to main content
Erschienen in: Nuclear Medicine and Molecular Imaging 2/2018

16.11.2017 | Review

Deep Learning in Nuclear Medicine and Molecular Imaging: Current Perspectives and Future Directions

verfasst von: Hongyoon Choi

Erschienen in: Nuclear Medicine and Molecular Imaging | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Recent advances in deep learning have impacted various scientific and industrial fields. Due to the rapid application of deep learning in biomedical data, molecular imaging has also started to adopt this technique. In this regard, it is expected that deep learning will potentially affect the roles of molecular imaging experts as well as clinical decision making. This review firstly offers a basic overview of deep learning particularly for image data analysis to give knowledge to nuclear medicine physicians and researchers. Because of the unique characteristics and distinctive aims of various types of molecular imaging, deep learning applications can be different from other fields. In this context, the review deals with current perspectives of deep learning in molecular imaging particularly in terms of development of biomarkers. Finally, future challenges of deep learning application for molecular imaging and future roles of experts in molecular imaging will be discussed.
Literatur
1.
Zurück zum Zitat Weber GM, Mandl KD, Kohane IS. Finding the missing link for big biomedical data. JAMA. 2014;311:2479–80.PubMed Weber GM, Mandl KD, Kohane IS. Finding the missing link for big biomedical data. JAMA. 2014;311:2479–80.PubMed
2.
Zurück zum Zitat Kuo M-H, Sahama T, Kushniruk AW, Borycki EM, Grunwell DK. Health big data analytics: current perspectives, challenges and potential solutions. Int J Big Data Intell. 2014;1:114–26.CrossRef Kuo M-H, Sahama T, Kushniruk AW, Borycki EM, Grunwell DK. Health big data analytics: current perspectives, challenges and potential solutions. Int J Big Data Intell. 2014;1:114–26.CrossRef
3.
Zurück zum Zitat Bengio Y. Learning deep architectures for AI. Foundations and trends® in. Mach Learn. 2009;2:1–127.CrossRef Bengio Y. Learning deep architectures for AI. Foundations and trends® in. Mach Learn. 2009;2:1–127.CrossRef
5.
Zurück zum Zitat Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Imagenet large scale visual recognition challenge. Int J Comput Vis. 2015;115:211–52.CrossRef Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Imagenet large scale visual recognition challenge. Int J Comput Vis. 2015;115:211–52.CrossRef
6.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Proces Syst. 2012;25:1090–8. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Proces Syst. 2012;25:1090–8.
7.
Zurück zum Zitat Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat Biotechnol. 2015;33:831–8.CrossRefPubMed Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat Biotechnol. 2015;33:831–8.CrossRefPubMed
9.
Zurück zum Zitat Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M et al. A survey on deep learning in medical image analysis. arXiv:170205747. 2017. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M et al. A survey on deep learning in medical image analysis. arXiv:170205747. 2017.
10.
Zurück zum Zitat Xu Y, Mo T, Feng Q, Zhong P, Lai M, Eric I et al., editors. Deep learning of feature representation with multiple instance learning for medical image analysis. Acoustics, Speech and Signal Processing (ICASSP), 2014 I.E. International Conference; 2014. Xu Y, Mo T, Feng Q, Zhong P, Lai M, Eric I et al., editors. Deep learning of feature representation with multiple instance learning for medical image analysis. Acoustics, Speech and Signal Processing (ICASSP), 2014 I.E. International Conference; 2014.
11.
Zurück zum Zitat Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging. 2016;35:1299–312.CrossRefPubMed Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging. 2016;35:1299–312.CrossRefPubMed
12.
Zurück zum Zitat Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316:2402–10.CrossRefPubMed Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316:2402–10.CrossRefPubMed
13.
Zurück zum Zitat Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.CrossRefPubMed Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.CrossRefPubMed
14.
Zurück zum Zitat Mamoshina P, Vieira A, Putin E, Zhavoronkov A. Applications of deep learning in biomedicine. Mol Pharm. 2016;13:1445–54.CrossRefPubMed Mamoshina P, Vieira A, Putin E, Zhavoronkov A. Applications of deep learning in biomedicine. Mol Pharm. 2016;13:1445–54.CrossRefPubMed
15.
Zurück zum Zitat Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Cogn Model. 1988;5:1. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Cogn Model. 1988;5:1.
16.
Zurück zum Zitat Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy layer-wise training of deep networks. Adv Neural Inf Proces Syst. 2006;19:153–160. Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy layer-wise training of deep networks. Adv Neural Inf Proces Syst. 2006;19:153–160.
17.
Zurück zum Zitat Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313:504–7.CrossRefPubMed Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313:504–7.CrossRefPubMed
18.
Zurück zum Zitat Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929–58. Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929–58.
19.
Zurück zum Zitat Ioffe S, Szegedy C, editors. Batch normalization: accelerating deep network training by reducing internal covariate shift. Proceedings of the 32nd International Conference on Machine Learning; 2015. Ioffe S, Szegedy C, editors. Batch normalization: accelerating deep network training by reducing internal covariate shift. Proceedings of the 32nd International Conference on Machine Learning; 2015.
20.
Zurück zum Zitat Nair V, Hinton GE, editors. Rectified linear units improve restricted boltzmann machines. Proceedings of the 27th International Conference on Machine Learning (ICML-10); 2010. Nair V, Hinton GE, editors. Rectified linear units improve restricted boltzmann machines. Proceedings of the 27th International Conference on Machine Learning (ICML-10); 2010.
21.
Zurück zum Zitat Oquab M, Bottou L, Laptev I, Sivic J, editors. Learning and transferring mid-level image representations using convolutional neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2014. Oquab M, Bottou L, Laptev I, Sivic J, editors. Learning and transferring mid-level image representations using convolutional neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2014.
22.
Zurück zum Zitat LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86:2278–324.CrossRef LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86:2278–324.CrossRef
23.
Zurück zum Zitat Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D et al., editors. Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D et al., editors. Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition; 2015.
24.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J, editors. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016. He K, Zhang X, Ren S, Sun J, editors. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016.
25.
Zurück zum Zitat Vinyals O, Toshev A, Bengio S, Erhan D, editors. Show and tell: a neural image caption generator. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2015. Vinyals O, Toshev A, Bengio S, Erhan D, editors. Show and tell: a neural image caption generator. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2015.
26.
Zurück zum Zitat Girshick R, editor. Fast r-cnn. Proceedings of the IEEE International Conference on Computer Vision; 2015. Girshick R, editor. Fast r-cnn. Proceedings of the IEEE International Conference on Computer Vision; 2015.
27.
Zurück zum Zitat Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. Adv Neural Inf Proces Syst. 2015;28:91–9. Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. Adv Neural Inf Proces Syst. 2015;28:91–9.
28.
Zurück zum Zitat Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv:160600915. 2016. Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv:160600915. 2016.
29.
Zurück zum Zitat Badrinarayanan V, Kendall A, Cipolla R. Segnet: a deep convolutional encoder-decoder architecture for image segmentation. arXiv:151100561. 2015. Badrinarayanan V, Kendall A, Cipolla R. Segnet: a deep convolutional encoder-decoder architecture for image segmentation. arXiv:151100561. 2015.
30.
Zurück zum Zitat Elmore JG, Longton GM, Carney PA, Geller BM, Onega T, Tosteson AN, et al. Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA. 2015;313:1122–32.CrossRefPubMedPubMedCentral Elmore JG, Longton GM, Carney PA, Geller BM, Onega T, Tosteson AN, et al. Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA. 2015;313:1122–32.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Keyes JW Jr. SUV: standard uptake or silly useless value? J Nucl Med. 1995;36:1836–9.PubMed Keyes JW Jr. SUV: standard uptake or silly useless value? J Nucl Med. 1995;36:1836–9.PubMed
32.
Zurück zum Zitat Wang H, Zhou Z, Li Y, Chen Z, Lu P, Wang W, et al. Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18 F-FDG PET/CT images. EJNMMI Res. 2017;7:11.CrossRefPubMedPubMedCentral Wang H, Zhou Z, Li Y, Chen Z, Lu P, Wang W, et al. Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18 F-FDG PET/CT images. EJNMMI Res. 2017;7:11.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, et al. Brain tumor segmentation with deep neural networks. Med Image Anal. 2017;35:18–31.CrossRefPubMed Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, et al. Brain tumor segmentation with deep neural networks. Med Image Anal. 2017;35:18–31.CrossRefPubMed
34.
Zurück zum Zitat Zhang W, Li R, Deng H, Wang L, Lin W, Ji S, et al. Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage. 2015;108:214–24.CrossRefPubMedPubMedCentral Zhang W, Li R, Deng H, Wang L, Lin W, Ji S, et al. Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage. 2015;108:214–24.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Roth HR, Lu L, Farag A, Shin H-C, Liu J, Turkbey EB et al., editors. Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin: Springer; 2015. Roth HR, Lu L, Farag A, Shin H-C, Liu J, Turkbey EB et al., editors. Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin: Springer; 2015.
36.
Zurück zum Zitat Choi H, Jin KH. Fast and robust segmentation of the striatum using deep convolutional neural networks. J Neurosci Methods. 2016;274:146–53.CrossRefPubMed Choi H, Jin KH. Fast and robust segmentation of the striatum using deep convolutional neural networks. J Neurosci Methods. 2016;274:146–53.CrossRefPubMed
37.
Zurück zum Zitat Shen W, Zhou M, Yang F, Yang C, Tian J, editors. Multi-scale convolutional neural networks for lung nodule classification. International Conference on Information Processing in Medical Imaging. Berlin: Springer; 2015. Shen W, Zhou M, Yang F, Yang C, Tian J, editors. Multi-scale convolutional neural networks for lung nodule classification. International Conference on Information Processing in Medical Imaging. Berlin: Springer; 2015.
38.
Zurück zum Zitat Setio AAA, Ciompi F, Litjens G, Gerke P, Jacobs C, van Riel SJ, et al. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging. 2016;35:1160–9.CrossRefPubMed Setio AAA, Ciompi F, Litjens G, Gerke P, Jacobs C, van Riel SJ, et al. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging. 2016;35:1160–9.CrossRefPubMed
39.
Zurück zum Zitat Kleesiek J, Urban G, Hubert A, Schwarz D, Maier-Hein K, Bendszus M, et al. Deep MRI brain extraction: a 3D convolutional neural network for skull stripping. NeuroImage. 2016;129:460–9.CrossRefPubMed Kleesiek J, Urban G, Hubert A, Schwarz D, Maier-Hein K, Bendszus M, et al. Deep MRI brain extraction: a 3D convolutional neural network for skull stripping. NeuroImage. 2016;129:460–9.CrossRefPubMed
40.
Zurück zum Zitat de Brebisson A, Montana G, editors. Deep neural networks for anatomical brain segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops; 2015. de Brebisson A, Montana G, editors. Deep neural networks for anatomical brain segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops; 2015.
41.
Zurück zum Zitat Chen H, Dou Q, Yu L, Heng P-A. Voxresnet: deep voxelwise residual networks for volumetric brain segmentation. arXiv:160805895. 2016. Chen H, Dou Q, Yu L, Heng P-A. Voxresnet: deep voxelwise residual networks for volumetric brain segmentation. arXiv:160805895. 2016.
42.
Zurück zum Zitat Avendi M, Kheradvar A, Jafarkhani H. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med Image Anal. 2016;30:108–19.CrossRefPubMed Avendi M, Kheradvar A, Jafarkhani H. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med Image Anal. 2016;30:108–19.CrossRefPubMed
43.
Zurück zum Zitat Charbonnier J-P, Van Rikxoort EM, Setio AA, Schaefer-Prokop CM, van Ginneken B, Ciompi F. Improving airway segmentation in computed tomography using leak detection with convolutional networks. Med Image Anal. 2017;36:52–60.CrossRefPubMed Charbonnier J-P, Van Rikxoort EM, Setio AA, Schaefer-Prokop CM, van Ginneken B, Ciompi F. Improving airway segmentation in computed tomography using leak detection with convolutional networks. Med Image Anal. 2017;36:52–60.CrossRefPubMed
44.
Zurück zum Zitat Pereira S, Pinto A, Alves V, Silva CA. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging. 2016;35:1240–51.CrossRefPubMed Pereira S, Pinto A, Alves V, Silva CA. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging. 2016;35:1240–51.CrossRefPubMed
46.
Zurück zum Zitat Trebeschi S, van Griethuysen JJ, Lambregts DM, Lahaye MJ, Parmer C, Bakers FC, et al. Deep learning for fully-automated localization and segmentation of rectal cancer on multiparametric MR. Sci Rep. 2017;7 Trebeschi S, van Griethuysen JJ, Lambregts DM, Lahaye MJ, Parmer C, Bakers FC, et al. Deep learning for fully-automated localization and segmentation of rectal cancer on multiparametric MR. Sci Rep. 2017;7
47.
Zurück zum Zitat Han D, Yu J, Yu Y, Zhang G, Zhong X, Lu J, et al. Comparison of 18 F-fluorothymidine and 18 F-fluorodeoxyglucose PET/CT in delineating gross tumor volume by optimal threshold in patients with squamous cell carcinoma of thoracic esophagus. Int J Radiat Oncol Biol Phys. 2010;76:1235–41.CrossRefPubMed Han D, Yu J, Yu Y, Zhang G, Zhong X, Lu J, et al. Comparison of 18 F-fluorothymidine and 18 F-fluorodeoxyglucose PET/CT in delineating gross tumor volume by optimal threshold in patients with squamous cell carcinoma of thoracic esophagus. Int J Radiat Oncol Biol Phys. 2010;76:1235–41.CrossRefPubMed
48.
Zurück zum Zitat Tylski P, Stute S, Grotus N, Doyeux K, Hapdey S, Gardin I, et al. Comparative assessment of methods for estimating tumor volume and standardized uptake value in 18F-FDG PET. J Nucl Med. 2010;51:268–76.CrossRefPubMed Tylski P, Stute S, Grotus N, Doyeux K, Hapdey S, Gardin I, et al. Comparative assessment of methods for estimating tumor volume and standardized uptake value in 18F-FDG PET. J Nucl Med. 2010;51:268–76.CrossRefPubMed
49.
Zurück zum Zitat Dong C, Loy CC, He K, Tang X. Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell. 2016;38:295–307.CrossRefPubMed Dong C, Loy CC, He K, Tang X. Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell. 2016;38:295–307.CrossRefPubMed
50.
Zurück zum Zitat Kim J, Kwon Lee J, Mu Lee K, editors. Accurate image super-resolution using very deep convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016. Kim J, Kwon Lee J, Mu Lee K, editors. Accurate image super-resolution using very deep convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016.
52.
Zurück zum Zitat Jiao J, Ourselin S. Fast PET reconstruction using Multi-scale Fully Convolutional Neural Networks. arXiv:170407244. 2017. Jiao J, Ourselin S. Fast PET reconstruction using Multi-scale Fully Convolutional Neural Networks. arXiv:170407244. 2017.
53.
Zurück zum Zitat Jin KH, McCann MT, Froustey E, Unser M. Deep convolutional neural network for inverse problems in imaging. IEEE Trans Image Process. 2017;26:4509–22.CrossRef Jin KH, McCann MT, Froustey E, Unser M. Deep convolutional neural network for inverse problems in imaging. IEEE Trans Image Process. 2017;26:4509–22.CrossRef
54.
Zurück zum Zitat Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. arXiv:161107004. 2016. Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. arXiv:161107004. 2016.
55.
Zurück zum Zitat Nie D, Trullo R, Petitjean C, Ruan S, Shen D. Medical Image Synthesis with Context-Aware Generative Adversarial Networks. arXiv:161205362. 2016. Nie D, Trullo R, Petitjean C, Ruan S, Shen D. Medical Image Synthesis with Context-Aware Generative Adversarial Networks. arXiv:161205362. 2016.
56.
Zurück zum Zitat Han X. MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys. 2017;44:1408–19.CrossRefPubMed Han X. MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys. 2017;44:1408–19.CrossRefPubMed
57.
Zurück zum Zitat Bezrukov I, Mantlik F, Schmidt H, Schölkopf B, Pichler BJ, editors. MR-based PET attenuation correction for PET/MR imaging. Seminars in nuclear medicine. Amsterdam: Elsevier; 2013. Bezrukov I, Mantlik F, Schmidt H, Schölkopf B, Pichler BJ, editors. MR-based PET attenuation correction for PET/MR imaging. Seminars in nuclear medicine. Amsterdam: Elsevier; 2013.
58.
Zurück zum Zitat Suk H-I, Lee S-W, Shen D. Initiative AsDN. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct Funct. 2015;220:841–59.CrossRefPubMed Suk H-I, Lee S-W, Shen D. Initiative AsDN. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct Funct. 2015;220:841–59.CrossRefPubMed
59.
Zurück zum Zitat Choi H, Jin KH. Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. arXiv:170406033. 2017. Choi H, Jin KH. Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. arXiv:170406033. 2017.
61.
Zurück zum Zitat Oakden-Rayner L, Carneiro G, Bessen T, Nascimento JC, Bradley AP, Palmer LJ. Precision radiology: predicting longevity using feature engineering and deep learning methods in a radiomics framework. Sci Rep. 2017;7:1648.CrossRefPubMedPubMedCentral Oakden-Rayner L, Carneiro G, Bessen T, Nascimento JC, Bradley AP, Palmer LJ. Precision radiology: predicting longevity using feature engineering and deep learning methods in a radiomics framework. Sci Rep. 2017;7:1648.CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Li Z, Wang Y, Yu J, Guo Y, Cao W. Deep learning based Radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci Rep. 2017;7 Li Z, Wang Y, Yu J, Guo Y, Cao W. Deep learning based Radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci Rep. 2017;7
63.
Zurück zum Zitat Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Cavalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5 Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Cavalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5
64.
Zurück zum Zitat Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–6.CrossRefPubMedPubMedCentral Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–6.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Choi H. Functional connectivity patterns of autism spectrum disorder identified by deep feature learning. arXiv:170707932. 2017. Choi H. Functional connectivity patterns of autism spectrum disorder identified by deep feature learning. arXiv:170707932. 2017.
69.
Zurück zum Zitat Gal Y, Ghahramani Z, editors. Dropout as a Bayesian approximation: representing model uncertainty in deep learning. International Conference on Machine Learning; 2016. Gal Y, Ghahramani Z, editors. Dropout as a Bayesian approximation: representing model uncertainty in deep learning. International Conference on Machine Learning; 2016.
70.
Zurück zum Zitat Van De Vijver MJ, He YD, Van't Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.CrossRefPubMed Van De Vijver MJ, He YD, Van't Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.CrossRefPubMed
71.
Zurück zum Zitat Carneiro G, Nascimento J, Bradley AP, editors. Unregistered multiview mammogram analysis with pre-trained deep learning models. International Conference on Medical Image Computing and Computer-Assisted Intervention. Berllin: Springer; 2015. Carneiro G, Nascimento J, Bradley AP, editors. Unregistered multiview mammogram analysis with pre-trained deep learning models. International Conference on Medical Image Computing and Computer-Assisted Intervention. Berllin: Springer; 2015.
72.
73.
Zurück zum Zitat Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. arXiv:170502315. 2017. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. arXiv:170502315. 2017.
Metadaten
Titel
Deep Learning in Nuclear Medicine and Molecular Imaging: Current Perspectives and Future Directions
verfasst von
Hongyoon Choi
Publikationsdatum
16.11.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Nuclear Medicine and Molecular Imaging / Ausgabe 2/2018
Print ISSN: 1869-3474
Elektronische ISSN: 1869-3482
DOI
https://doi.org/10.1007/s13139-017-0504-7

Weitere Artikel der Ausgabe 2/2018

Nuclear Medicine and Molecular Imaging 2/2018 Zur Ausgabe