Skip to main content
Erschienen in: Journal of Digital Imaging 6/2019

10.04.2019

Deep Learning Method for Automated Classification of Anteroposterior and Posteroanterior Chest Radiographs

verfasst von: Tae Kyung Kim, Paul H. Yi, Jinchi Wei, Ji Won Shin, Gregory Hager, Ferdinand K. Hui, Haris I. Sair, Cheng Ting Lin

Erschienen in: Journal of Imaging Informatics in Medicine | Ausgabe 6/2019

Einloggen, um Zugang zu erhalten

Abstract

Ensuring correct radiograph view labeling is important for machine learning algorithm development and quality control of studies obtained from multiple facilities. The purpose of this study was to develop and test the performance of a deep convolutional neural network (DCNN) for the automated classification of frontal chest radiographs (CXRs) into anteroposterior (AP) or posteroanterior (PA) views. We obtained 112,120 CXRs from the NIH ChestX-ray14 database, a publicly available CXR database performed in adult (106,179 (95%)) and pediatric (5941 (5%)) patients consisting of 44,810 (40%) AP and 67,310 (60%) PA views. CXRs were used to train, validate, and test the ResNet-18 DCNN for classification of radiographs into anteroposterior and posteroanterior views. A second DCNN was developed in the same manner using only the pediatric CXRs (2885 (49%) AP and 3056 (51%) PA). Receiver operating characteristic (ROC) curves with area under the curve (AUC) and standard diagnostic measures were used to evaluate the DCNN’s performance on the test dataset. The DCNNs trained on the entire CXR dataset and pediatric CXR dataset had AUCs of 1.0 and 0.997, respectively, and accuracy of 99.6% and 98%, respectively, for distinguishing between AP and PA CXR. Sensitivity and specificity were 99.6% and 99.5%, respectively, for the DCNN trained on the entire dataset and 98% for both sensitivity and specificity for the DCNN trained on the pediatric dataset. The observed difference in performance between the two algorithms was not statistically significant (p = 0.17). Our DCNNs have high accuracy for classifying AP/PA orientation of frontal CXRs, with only slight reduction in performance when the training dataset was reduced by 95%. Rapid classification of CXRs by the DCNN can facilitate annotation of large image datasets for machine learning and quality assurance purposes.
Literatur
1.
Zurück zum Zitat Yi PH, Hui FK, Ting DS: Artificial intelligence and radiology: collaboration is key. J Am Coll Radiol 15:781–783, 2018CrossRef Yi PH, Hui FK, Ting DS: Artificial intelligence and radiology: collaboration is key. J Am Coll Radiol 15:781–783, 2018CrossRef
2.
Zurück zum Zitat Litjens G, Kooi T, Bejnordi BE, Setio AA, Ciompi F, Ghafoorian M, van der Laak JA, van Ginneken B, Sánchez CI: A survey on deep learning in medical image analysis. Med Image Anal 42:60–88, 2017CrossRef Litjens G, Kooi T, Bejnordi BE, Setio AA, Ciompi F, Ghafoorian M, van der Laak JA, van Ginneken B, Sánchez CI: A survey on deep learning in medical image analysis. Med Image Anal 42:60–88, 2017CrossRef
3.
Zurück zum Zitat Kim DH, MacKinnon T: Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks. Clin Radiol 73:439–445, 2018CrossRef Kim DH, MacKinnon T: Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks. Clin Radiol 73:439–445, 2018CrossRef
4.
Zurück zum Zitat Lakhani P, Sundaram B: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284:574–582, 2017CrossRef Lakhani P, Sundaram B: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284:574–582, 2017CrossRef
5.
Zurück zum Zitat Wong TY, Bressler NM: Artificial intelligence with deep learning technology looks into diabetic retinopathy screening. JAMA 316:2366, 2016CrossRef Wong TY, Bressler NM: Artificial intelligence with deep learning technology looks into diabetic retinopathy screening. JAMA 316:2366, 2016CrossRef
6.
Zurück zum Zitat Prevedello LM, Erdal BS, Ryu JL, Little KJ, Demirer M, Qian S, White RD: Automated critical test findings identification and online notification system using artificial intelligence in imaging. Radiology 285:923–931, 2017CrossRef Prevedello LM, Erdal BS, Ryu JL, Little KJ, Demirer M, Qian S, White RD: Automated critical test findings identification and online notification system using artificial intelligence in imaging. Radiology 285:923–931, 2017CrossRef
7.
Zurück zum Zitat Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP: Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 287:313–322, 2017CrossRef Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP: Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 287:313–322, 2017CrossRef
8.
Zurück zum Zitat Rajkomar A, Lingam S, Taylor AG, Blum M, Mongan J: High-throughput classification of radiographs using deep convolutional neural networks. J Digit Imaging 30:95–101, 2017CrossRef Rajkomar A, Lingam S, Taylor AG, Blum M, Mongan J: High-throughput classification of radiographs using deep convolutional neural networks. J Digit Imaging 30:95–101, 2017CrossRef
9.
Zurück zum Zitat Aakre KT, Johnson CD: Plain-radiographic image labeling: a process to improve clinical outcomes. J Am Coll Radiol 3:949–953, 2006CrossRef Aakre KT, Johnson CD: Plain-radiographic image labeling: a process to improve clinical outcomes. J Am Coll Radiol 3:949–953, 2006CrossRef
10.
Zurück zum Zitat Goodman LR: Felson’s principles of chest Roentgenology, a programmed text, 4th edition. Saunders, 2014 Goodman LR: Felson’s principles of chest Roentgenology, a programmed text, 4th edition. Saunders, 2014
11.
Zurück zum Zitat Jaeger S, Candemir S, Antani S, Wang Y, Lu PX, Thoma G: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant Imaging Med Surg 4:475–477, 2014PubMedPubMedCentral Jaeger S, Candemir S, Antani S, Wang Y, Lu PX, Thoma G: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant Imaging Med Surg 4:475–477, 2014PubMedPubMedCentral
12.
Zurück zum Zitat Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM: ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In Proceedings - IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 3462–3471, 2017 Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM: ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In Proceedings - IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 3462–3471, 2017
13.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385, 2015 He K, Zhang X, Ren S, Sun J: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385, 2015
14.
Zurück zum Zitat Lakhani P: Deep convolutional neural networks for endotracheal tube position and X-ray image classification: challenges and opportunities. J Digit Imaging 30:460–468, 2017CrossRef Lakhani P: Deep convolutional neural networks for endotracheal tube position and X-ray image classification: challenges and opportunities. J Digit Imaging 30:460–468, 2017CrossRef
15.
Zurück zum Zitat Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A: Learning deep features for discriminative localization. In Proceedings - IEEE Conference on Computer Vision and Pattern Recognition (CVPR): 2921–2929, 2016 Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A: Learning deep features for discriminative localization. In Proceedings - IEEE Conference on Computer Vision and Pattern Recognition (CVPR): 2921–2929, 2016
16.
Zurück zum Zitat DeLong ER, DeLong DM, Clarke-Pearson DL: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845, 1988CrossRef DeLong ER, DeLong DM, Clarke-Pearson DL: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845, 1988CrossRef
17.
18.
Zurück zum Zitat Cheng PM, Malhi HS: Transfer learning with convolutional neural networks for classification of abdominal ultrasound images. J Digit Imaging 30:234–243, 2017CrossRef Cheng PM, Malhi HS: Transfer learning with convolutional neural networks for classification of abdominal ultrasound images. J Digit Imaging 30:234–243, 2017CrossRef
Metadaten
Titel
Deep Learning Method for Automated Classification of Anteroposterior and Posteroanterior Chest Radiographs
verfasst von
Tae Kyung Kim
Paul H. Yi
Jinchi Wei
Ji Won Shin
Gregory Hager
Ferdinand K. Hui
Haris I. Sair
Cheng Ting Lin
Publikationsdatum
10.04.2019
Verlag
Springer International Publishing
Erschienen in
Journal of Imaging Informatics in Medicine / Ausgabe 6/2019
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-019-00208-0

Weitere Artikel der Ausgabe 6/2019

Journal of Digital Imaging 6/2019 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.