Skip to main content
Erschienen in:

27.07.2024 | Ultrasound

Deep learning model based on contrast-enhanced ultrasound for predicting vessels encapsulating tumor clusters in hepatocellular carcinoma

verfasst von: Wenxin Xu, Haoyan Zhang, Rui Zhang, Xian Zhong, Xiaoju Li, Wenwen Zhou, Xiaoyan Xie, Kun Wang, Ming Xu

Erschienen in: European Radiology | Ausgabe 2/2025

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To establish and validate a non-invasive deep learning (DL) model based on contrast-enhanced ultrasound (CEUS) to predict vessels encapsulating tumor clusters (VETC) patterns in hepatocellular carcinoma (HCC).

Materials and methods

This retrospective study included consecutive HCC patients with preoperative CEUS images and available tissue specimens. Patients were randomly allocated into the training and test cohorts. CEUS images were analyzed using the ResNet-18 convolutional neural network for the development and validation of the VETC predictive model. The predictive value for postoperative early recurrence (ER) of the proposed model was further evaluated.

Results

A total of 242 patients were enrolled finally, including 195 in the training cohort (54.6 ± 11.2 years, 178 males) and 47 in the test cohort (55.1 ± 10.6 years, 40 males). The DL model (DL signature) achieved favorable performance in both the training cohort (area under the receiver operating characteristics curve [AUC]: 0.92, 95% confidence interval [CI]: 0.88–0.96) and test cohort (AUC: 0.90, 95% CI: 0.82–0.99). The stratified analysis demonstrated good discrimination of DL signature regardless of tumor size. Moreover, the DL signature was found independently correlated with postoperative ER (hazard ratio [HR]: 1.99, 95% CI: 1.29–3.06, p = 0.002). C-indexes of 0.70 and 0.73 were achieved when the DL signature was used to predict ER independently and combined with clinical features.

Conclusion

The proposed DL signature provides a non-invasive and practical method for VETC-HCC prediction, and contributes to the identification of patients with high risk of postoperative ER.

Clinical relevance statement

This DL model based on contrast-enhanced US displayed an important role in non-invasive diagnosis and prognostication for patients with VETC-HCC, which was helpful in individualized management.

Key Points

  • Preoperative biopsy to determine VETC status in HCC patients is limited.
  • The contrast-enhanced DL model provides a non-invasive tool for the prediction of VETC-HCC.
  • The proposed deep-learning signature assisted in identifying patients with a high risk of postoperative ER.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Sung H, Ferlay J, Siegel RL et al (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249CrossRefPubMed Sung H, Ferlay J, Siegel RL et al (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249CrossRefPubMed
2.
Zurück zum Zitat Tabrizian P, Jibara G, Shrager B, Schwartz M, Roayaie S (2015) Recurrence of hepatocellular cancer after resection: patterns, treatments, and prognosis. Ann Surg 261:947–955CrossRefPubMed Tabrizian P, Jibara G, Shrager B, Schwartz M, Roayaie S (2015) Recurrence of hepatocellular cancer after resection: patterns, treatments, and prognosis. Ann Surg 261:947–955CrossRefPubMed
3.
Zurück zum Zitat McGlynn KA, Petrick JL, El-Serag HB (2021) Epidemiology of hepatocellular carcinoma. Hepatology 73:4–13CrossRefPubMed McGlynn KA, Petrick JL, El-Serag HB (2021) Epidemiology of hepatocellular carcinoma. Hepatology 73:4–13CrossRefPubMed
4.
Zurück zum Zitat Vogel A, Meyer T, Sapisochin G, Salem R, Saborowski A (2022) Hepatocellular carcinoma. Lancet 400:1345–1362CrossRefPubMed Vogel A, Meyer T, Sapisochin G, Salem R, Saborowski A (2022) Hepatocellular carcinoma. Lancet 400:1345–1362CrossRefPubMed
5.
Zurück zum Zitat Okabe H, Yoshizumi T, Yamashita YI et al (2018) Histological architectural classification determines recurrence pattern and prognosis after curative hepatectomy in patients with hepatocellular carcinoma. PLoS One 13:e0203856CrossRefPubMedPubMedCentral Okabe H, Yoshizumi T, Yamashita YI et al (2018) Histological architectural classification determines recurrence pattern and prognosis after curative hepatectomy in patients with hepatocellular carcinoma. PLoS One 13:e0203856CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Renne SL, Woo HY, Allegra S, Rudini N et al (2020) Vessels encapsulating tumor clusters (VETC) is a powerful predictor of aggressive hepatocellular carcinoma. Hepatology 71:183–195CrossRefPubMed Renne SL, Woo HY, Allegra S, Rudini N et al (2020) Vessels encapsulating tumor clusters (VETC) is a powerful predictor of aggressive hepatocellular carcinoma. Hepatology 71:183–195CrossRefPubMed
7.
Zurück zum Zitat Chen ZY, Guo ZX, Lu LH et al (2021) The predictive value of vessels encapsulating tumor clusters in treatment optimization for recurrent early-stage hepatocellular carcinoma. Cancer Med 10:5466–5474CrossRefPubMedPubMedCentral Chen ZY, Guo ZX, Lu LH et al (2021) The predictive value of vessels encapsulating tumor clusters in treatment optimization for recurrent early-stage hepatocellular carcinoma. Cancer Med 10:5466–5474CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Fang JH, Zhou HC, Zhang C et al (2015) A novel vascular pattern promotes metastasis of hepatocellular carcinoma in an epithelial-mesenchymal transition-independent manner. Hepatology 62:452–465CrossRefPubMed Fang JH, Zhou HC, Zhang C et al (2015) A novel vascular pattern promotes metastasis of hepatocellular carcinoma in an epithelial-mesenchymal transition-independent manner. Hepatology 62:452–465CrossRefPubMed
9.
Zurück zum Zitat Kawasaki J, Toshima T, Yoshizumi T et al (2021) Prognostic impact of vessels that encapsulate tumor cluster (VETC) in patients who underwent liver transplantation for hepatocellular carcinoma. Ann Surg Oncol 28:8186–8195CrossRefPubMed Kawasaki J, Toshima T, Yoshizumi T et al (2021) Prognostic impact of vessels that encapsulate tumor cluster (VETC) in patients who underwent liver transplantation for hepatocellular carcinoma. Ann Surg Oncol 28:8186–8195CrossRefPubMed
10.
Zurück zum Zitat Lin WP, Xing KL, Fu JC et al (2021) Development and validation of a model including distinct vascular patterns to estimate survival in hepatocellular carcinoma. JAMA Netw Open 4:e2125055CrossRefPubMedPubMedCentral Lin WP, Xing KL, Fu JC et al (2021) Development and validation of a model including distinct vascular patterns to estimate survival in hepatocellular carcinoma. JAMA Netw Open 4:e2125055CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Dennis C, Prince DS, Moayed-Alaei L et al (2022) Association between vessels that encapsulate tumour clusters vascular pattern and hepatocellular carcinoma recurrence following liver transplantation. Front Oncol 12:997093CrossRefPubMedPubMedCentral Dennis C, Prince DS, Moayed-Alaei L et al (2022) Association between vessels that encapsulate tumour clusters vascular pattern and hepatocellular carcinoma recurrence following liver transplantation. Front Oncol 12:997093CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Fang JH, Xu L, Shang LR et al (2019) Vessels that encapsulate tumor clusters (VETC) pattern is a predictor of sorafenib benefit in patients with hepatocellular carcinoma. Hepatology 70:824–839CrossRefPubMed Fang JH, Xu L, Shang LR et al (2019) Vessels that encapsulate tumor clusters (VETC) pattern is a predictor of sorafenib benefit in patients with hepatocellular carcinoma. Hepatology 70:824–839CrossRefPubMed
13.
Zurück zum Zitat Zhang P, Ono A, Fujii Y et al (2022) The presence of vessels encapsulating tumor clusters is associated with an immunosuppressive tumor microenvironment in hepatocellular carcinoma. Int J Cancer 151:2278–2290CrossRefPubMed Zhang P, Ono A, Fujii Y et al (2022) The presence of vessels encapsulating tumor clusters is associated with an immunosuppressive tumor microenvironment in hepatocellular carcinoma. Int J Cancer 151:2278–2290CrossRefPubMed
14.
Zurück zum Zitat Singal AG, Kanwal F, Llovet JM (2023) Global trends in hepatocellular carcinoma epidemiology: implications for screening, prevention and therapy. Nat Rev Clin Oncol 20:864–884CrossRefPubMed Singal AG, Kanwal F, Llovet JM (2023) Global trends in hepatocellular carcinoma epidemiology: implications for screening, prevention and therapy. Nat Rev Clin Oncol 20:864–884CrossRefPubMed
15.
Zurück zum Zitat Du S, Cao K, Yan Y, Wang Y, Wang Z, Lin D (2023) Developments and current status of cell-free DNA in the early detection and management of hepatocellular carcinoma. J Gastroenterol Hepatol 39:231–244 Du S, Cao K, Yan Y, Wang Y, Wang Z, Lin D (2023) Developments and current status of cell-free DNA in the early detection and management of hepatocellular carcinoma. J Gastroenterol Hepatol 39:231–244
16.
Zurück zum Zitat Shaik MR, Sagar PR, Shaik NA, Randhawa N (2023) Liquid biopsy in hepatocellular carcinoma: the significance of circulating tumor cells in diagnosis, prognosis, and treatment monitoring. Int J Mol Sci 24:10644 Shaik MR, Sagar PR, Shaik NA, Randhawa N (2023) Liquid biopsy in hepatocellular carcinoma: the significance of circulating tumor cells in diagnosis, prognosis, and treatment monitoring. Int J Mol Sci 24:10644
17.
Zurück zum Zitat Fan Y, Yu Y, Hu M et al (2021) Imaging features based on Gd-EOB-DTPA-enhanced MRI for predicting vessels encapsulating tumor clusters (VETC) in patients with hepatocellular carcinoma. Br J Radiol 94:20200950CrossRefPubMedPubMedCentral Fan Y, Yu Y, Hu M et al (2021) Imaging features based on Gd-EOB-DTPA-enhanced MRI for predicting vessels encapsulating tumor clusters (VETC) in patients with hepatocellular carcinoma. Br J Radiol 94:20200950CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Fan Y, Yu Y, Wang X et al (2021) Texture analysis based on Gd-EOB-DTPA-enhanced MRI for identifying vessels encapsulating tumor clusters (VETC)-positive hepatocellular carcinoma. J Hepatocell Carcinoma 8:349–359CrossRefPubMedPubMedCentral Fan Y, Yu Y, Wang X et al (2021) Texture analysis based on Gd-EOB-DTPA-enhanced MRI for identifying vessels encapsulating tumor clusters (VETC)-positive hepatocellular carcinoma. J Hepatocell Carcinoma 8:349–359CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Feng Z, Li H, Zhao H et al (2021) Preoperative CT for characterization of aggressive macro trabecular-massive subtype and vessels that encapsulate tumor clusters pattern in hepatocellular carcinoma. Radiology 300:219–229CrossRefPubMed Feng Z, Li H, Zhao H et al (2021) Preoperative CT for characterization of aggressive macro trabecular-massive subtype and vessels that encapsulate tumor clusters pattern in hepatocellular carcinoma. Radiology 300:219–229CrossRefPubMed
20.
Zurück zum Zitat Chu T, Zhao C, Zhang J et al (2022) Application of a convolutional neural network for multitask learning to simultaneously predict microvascular invasion and vessels that encapsulate tumor clusters in hepatocellular carcinoma. Ann Surg Oncol 29:6774–6783CrossRefPubMedPubMedCentral Chu T, Zhao C, Zhang J et al (2022) Application of a convolutional neural network for multitask learning to simultaneously predict microvascular invasion and vessels that encapsulate tumor clusters in hepatocellular carcinoma. Ann Surg Oncol 29:6774–6783CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Guan R, Lin W, Zou J et al (2022) Development and validation of a novel nomogram for predicting vessels that encapsulate tumor cluster in hepatocellular carcinoma. Cancer Control 29:10732748221102820CrossRefPubMedPubMedCentral Guan R, Lin W, Zou J et al (2022) Development and validation of a novel nomogram for predicting vessels that encapsulate tumor cluster in hepatocellular carcinoma. Cancer Control 29:10732748221102820CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Yu Y, Fan Y, Wang X et al (2022) Gd-EOB-DTPA-enhanced MRI radiomics to predict vessels encapsulating tumor clusters (VETC) and patient prognosis in hepatocellular carcinoma. Eur Radiol 32:959–970CrossRefPubMed Yu Y, Fan Y, Wang X et al (2022) Gd-EOB-DTPA-enhanced MRI radiomics to predict vessels encapsulating tumor clusters (VETC) and patient prognosis in hepatocellular carcinoma. Eur Radiol 32:959–970CrossRefPubMed
23.
Zurück zum Zitat Frinking P, Segers T, Luan Y, Tranquart F (2020) Three decades of ultrasound contrast agents: a review of the past, present and future improvements. Ultrasound Med Biol 46:892–908CrossRefPubMed Frinking P, Segers T, Luan Y, Tranquart F (2020) Three decades of ultrasound contrast agents: a review of the past, present and future improvements. Ultrasound Med Biol 46:892–908CrossRefPubMed
25.
Zurück zum Zitat Avanzo M, Wei L, Stancanello J et al (2020) Machine and deep learning methods for radiomics. Med Phys 47:e185–e202CrossRefPubMed Avanzo M, Wei L, Stancanello J et al (2020) Machine and deep learning methods for radiomics. Med Phys 47:e185–e202CrossRefPubMed
26.
Zurück zum Zitat Xia T, Zhao B, Li B et al (2023) MRI-based radiomics and deep learning in biological characteristics and prognosis of hepatocellular carcinoma: opportunities and challenges. J Magn Reson Imaging 59:767–783 Xia T, Zhao B, Li B et al (2023) MRI-based radiomics and deep learning in biological characteristics and prognosis of hepatocellular carcinoma: opportunities and challenges. J Magn Reson Imaging 59:767–783
27.
Zurück zum Zitat Qin X, Hu X, Xiao W, Zhu C, Ma Q, Zhang C (2023) Preoperative evaluation of hepatocellular carcinoma differentiation using contrast-enhanced ultrasound-based deep-learning radiomics model. J Hepatocell Carcinoma 10:157–168CrossRefPubMedPubMedCentral Qin X, Hu X, Xiao W, Zhu C, Ma Q, Zhang C (2023) Preoperative evaluation of hepatocellular carcinoma differentiation using contrast-enhanced ultrasound-based deep-learning radiomics model. J Hepatocell Carcinoma 10:157–168CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Singh S, Hoque S, Zekry A, Sowmya A (2023) Radiological diagnosis of chronic liver disease and hepatocellular carcinoma: a review. J Med Syst 47:73CrossRefPubMedPubMedCentral Singh S, Hoque S, Zekry A, Sowmya A (2023) Radiological diagnosis of chronic liver disease and hepatocellular carcinoma: a review. J Med Syst 47:73CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Qin X, Zhu J, Tu Z, Ma Q, Tang J, Zhang C (2023) Contrast-enhanced ultrasound with deep learning with attention mechanisms for predicting microvascular invasion in single hepatocellular carcinoma. Acad Radiol 30:S73–S80CrossRefPubMed Qin X, Zhu J, Tu Z, Ma Q, Tang J, Zhang C (2023) Contrast-enhanced ultrasound with deep learning with attention mechanisms for predicting microvascular invasion in single hepatocellular carcinoma. Acad Radiol 30:S73–S80CrossRefPubMed
30.
Zurück zum Zitat Dietrich CF, Nolsoe CP, Barr RG et al (2020) Guidelines and good clinical practice recommendations for contrast-enhanced ultrasound (CEUS) in the liver-update 2020 WFUMB in cooperation with EFSUMB, AFSUMB, AIUM, and FLAUS. Ultrasound Med Biol 46:2579–2604CrossRefPubMed Dietrich CF, Nolsoe CP, Barr RG et al (2020) Guidelines and good clinical practice recommendations for contrast-enhanced ultrasound (CEUS) in the liver-update 2020 WFUMB in cooperation with EFSUMB, AFSUMB, AIUM, and FLAUS. Ultrasound Med Biol 46:2579–2604CrossRefPubMed
31.
Zurück zum Zitat Wang K, Lu X, Zhou H, Gao Y et al (2019) Deep learning radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study. Gut 68:729–741CrossRefPubMed Wang K, Lu X, Zhou H, Gao Y et al (2019) Deep learning radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study. Gut 68:729–741CrossRefPubMed
32.
Zurück zum Zitat Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22:1345–1359CrossRef Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22:1345–1359CrossRef
34.
Zurück zum Zitat Chen FM, Du M, Qi X et al (2023) Nomogram estimating vessels encapsulating tumor clusters in hepatocellular carcinoma from preoperative gadoxetate disodium-enhanced MRI. J Magn Reson Imaging 57:1893–1905CrossRefPubMed Chen FM, Du M, Qi X et al (2023) Nomogram estimating vessels encapsulating tumor clusters in hepatocellular carcinoma from preoperative gadoxetate disodium-enhanced MRI. J Magn Reson Imaging 57:1893–1905CrossRefPubMed
Metadaten
Titel
Deep learning model based on contrast-enhanced ultrasound for predicting vessels encapsulating tumor clusters in hepatocellular carcinoma
verfasst von
Wenxin Xu
Haoyan Zhang
Rui Zhang
Xian Zhong
Xiaoju Li
Wenwen Zhou
Xiaoyan Xie
Kun Wang
Ming Xu
Publikationsdatum
27.07.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 2/2025
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-024-10985-0

Neu im Fachgebiet Radiologie

Röntgen-Thorax oder LDCT fürs Lungenscreening nach HNSCC?

Personen, die an einem Plattenepithelkarzinom im Kopf-Hals-Bereich erkrankt sind, haben ein erhöhtes Risiko für Metastasen oder zweite Primärmalignome der Lunge. Eine Studie hat untersucht, wie die radiologische Überwachung aussehen sollte.

Statine: Was der G-BA-Beschluss für Praxen bedeutet

Nach dem G-BA-Beschluss zur erweiterten Verordnungsfähigkeit von Lipidsenkern rechnet die DEGAM mit 200 bis 300 neuen Dauerpatienten pro Praxis. Im Interview erläutert Präsidiumsmitglied Erika Baum, wie Hausärztinnen und Hausärzte am besten vorgehen.

Brustdichte nicht mit Multivitaminpräparat-Einnahme assoziiert

Der regelmäßige Gebrauch von Nahrungsergänzungsmitteln scheint nicht die mammografische Brustdichte zu erhöhen. In einer US-amerikanischen Studie jedenfalls ließ sich ein derartiger Zusammenhang nicht bestätigen.

Erhöhte Suizidrate unter US-Ärztinnen

Während der Arztberuf Männer eher vor Suizid schützt, erhöht er das Risiko bei Frauen – zumindest in den USA: Die Suizidinzidenz unter Ärztinnen ist um die Hälfte höher als unter Frauen mit anderen Berufen. Männliche Ärzte töten sich dennoch wesentlich häufiger selbst als weibliche.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.