Skip to main content
Erschienen in: Annals of Nuclear Medicine 10/2022

01.08.2022 | Original Article

Deep-learning prediction of amyloid deposition from early-phase amyloid positron emission tomography imaging

verfasst von: Seisaku Komori, Donna J. Cross, Megan Mills, Yasuomi Ouchi, Sadahiko Nishizawa, Hiroyuki Okada, Takashi Norikane, Tanyaluck Thientunyakit, Yoshimi Anzai, Satoshi Minoshima

Erschienen in: Annals of Nuclear Medicine | Ausgabe 10/2022

Einloggen, um Zugang zu erhalten

Abstract

Objective

While the use of biomarkers for the detection of early and preclinical Alzheimer's Disease has become essential, the need to wait for over an hour after injection to obtain sufficient image quality can be challenging for patients with suspected dementia and their caregivers. This study aimed to develop an image-based deep-learning technique to generate delayed uptake patterns of amyloid positron emission tomography (PET) images using only early-phase images obtained from 0–20 min after radiotracer injection.

Methods

We prepared pairs of early and delayed [11C]PiB dynamic images from 253 patients (cognitively normal n = 32, fronto-temporal dementia n = 39, mild cognitive impairment n = 19, Alzheimer’s disease n = 163) as a training dataset. The neural network was trained with the early images as the input, and the output was the corresponding delayed image. A U-net convolutional neural network (CNN) and a conditional generative adversarial network (C-GAN) were used for the deep-learning architecture and the data augmentation methods, respectively. Then, an independent test data set consisting of early-phase amyloid PET images (n = 19) was used to generate corresponding delayed images using the trained network. Two nuclear medicine physicians interpreted the actual delayed images and predicted delayed images for amyloid positivity. In addition, the concordance of the actual delayed and predicted delayed images was assessed statistically.

Results

The concordance of amyloid positivity between the actual versus AI-predicted delayed images was 79%(κ = 0.60) and 79% (κ = 0.59) for each physician, respectively. In addition, the physicians’ agreement rate was at 89% (κ = 0.79) when the same image was interpreted. And, the actual versus AI-predicted delayed images were not readily distinguishable (correct answer rate, 55% and 47% for each physician, respectively). The statistical comparison of the actual versus the predicted delated images indicated that the peak signal-to-noise ratio (PSNR) was 21.8 dB ± 2.2 dB, and the structural similarity index (SSIM) was 0.45 ± 0.04.

Conclusion

This study demonstrates the feasibility of an image-based deep-learning framework to predict delayed patterns of Amyloid PET uptake using only the early phase images. This AI-based image generation method has the potential to reduce scan time for amyloid PET and increase the patient throughput, without sacrificing diagnostic accuracy for amyloid positivity.
Literatur
1.
Zurück zum Zitat Prince M, Wimo A, Guerchet M, Ali G, Wu Y, Prina M. The global impact of dementia. World Alzheimer Rep. 2015;2:1–82. Prince M, Wimo A, Guerchet M, Ali G, Wu Y, Prina M. The global impact of dementia. World Alzheimer Rep. 2015;2:1–82.
2.
Zurück zum Zitat Dening T, Babu Sandilyan M. Medical treatment and management of patients with dementia. Nurs Stand. 2015;29:43–9.CrossRef Dening T, Babu Sandilyan M. Medical treatment and management of patients with dementia. Nurs Stand. 2015;29:43–9.CrossRef
3.
Zurück zum Zitat Cohen AD, Klunk WE. Early detection of Alzheimer’s disease using PiB and FDG PET. Neurobiol Dis. 2014;72:117–22.CrossRef Cohen AD, Klunk WE. Early detection of Alzheimer’s disease using PiB and FDG PET. Neurobiol Dis. 2014;72:117–22.CrossRef
4.
Zurück zum Zitat Mukhopadhyay S, Banerjee D. A primer on the evolution of aducanumab: the first antibody approved for treatment of Alzheimer’s disease. J Alzheimers Dis. 2021;2:2. Mukhopadhyay S, Banerjee D. A primer on the evolution of aducanumab: the first antibody approved for treatment of Alzheimer’s disease. J Alzheimers Dis. 2021;2:2.
5.
Zurück zum Zitat Siemers E. Designing clinical trials for early (pre-dementia) Alzheimer’s disease: determining the appropriate population for treatment. J Nutr Health Aging. 2011;15:22–4.CrossRef Siemers E. Designing clinical trials for early (pre-dementia) Alzheimer’s disease: determining the appropriate population for treatment. J Nutr Health Aging. 2011;15:22–4.CrossRef
6.
Zurück zum Zitat Rodell A, Aanerud J, Braendgaard H, Gjedde A. Washout allometric reference method (WARM) for parametric analysis of [(11)C]PIB in human brains. Front Aging Neurosci. 2013;5:45.CrossRef Rodell A, Aanerud J, Braendgaard H, Gjedde A. Washout allometric reference method (WARM) for parametric analysis of [(11)C]PIB in human brains. Front Aging Neurosci. 2013;5:45.CrossRef
7.
Zurück zum Zitat Minoshima S, Cross D. Application of artificial intelligence in brain molecular imaging. Ann Nucl Med. 2022;36:103–10.CrossRef Minoshima S, Cross D. Application of artificial intelligence in brain molecular imaging. Ann Nucl Med. 2022;36:103–10.CrossRef
8.
Zurück zum Zitat Arabi H, AkhavanAllaf A, Sanaat A, Shiri I, Zaidi H. The promise of artificial intelligence and deep learning in PET and SPECT imaging. Phys Med. 2021;83:122–37.CrossRef Arabi H, AkhavanAllaf A, Sanaat A, Shiri I, Zaidi H. The promise of artificial intelligence and deep learning in PET and SPECT imaging. Phys Med. 2021;83:122–37.CrossRef
9.
Zurück zum Zitat Fabrizio C, Termine A, Caltagirone C, Sancesario G. Artificial intelligence for Alzheimer’s disease: promise or challenge? Diagnostics (Basel). 2021;11:2. Fabrizio C, Termine A, Caltagirone C, Sancesario G. Artificial intelligence for Alzheimer’s disease: promise or challenge? Diagnostics (Basel). 2021;11:2.
10.
Zurück zum Zitat Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain-transform manifold learning. Nature. 2018;555:487–92.CrossRef Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain-transform manifold learning. Nature. 2018;555:487–92.CrossRef
11.
Zurück zum Zitat Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin PM, Larochelle H. Brain tumor segmentation with deep neural networks. Med Image Anal. 2017;35:18–31.CrossRef Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin PM, Larochelle H. Brain tumor segmentation with deep neural networks. Med Image Anal. 2017;35:18–31.CrossRef
12.
Zurück zum Zitat Ding Y, Sohn JH, Kawczynski MG, Trivedi H, Harnish R, Jenkins NW, Lituiev D, Copeland TP, Aboian MS, Mari Aparici C, Behr SC, Flavell RR, Huang SY, Zalocusky KA, Nardo L, Seo Y, Hawkins RA, Hernandez Pampaloni M, Hadley D, Franc BL. A deep learning model to predict a diagnosis of Alzheimer disease by using (18)F-FDG PET of the brain. Radiology. 2019;290:456–64.CrossRef Ding Y, Sohn JH, Kawczynski MG, Trivedi H, Harnish R, Jenkins NW, Lituiev D, Copeland TP, Aboian MS, Mari Aparici C, Behr SC, Flavell RR, Huang SY, Zalocusky KA, Nardo L, Seo Y, Hawkins RA, Hernandez Pampaloni M, Hadley D, Franc BL. A deep learning model to predict a diagnosis of Alzheimer disease by using (18)F-FDG PET of the brain. Radiology. 2019;290:456–64.CrossRef
13.
Zurück zum Zitat Kikuchi M, Hirosawa T, Yokokura M, Yagi S, Mori N, Yoshikawa E, Yoshihara Y, Sugihara G, Takebayashi K, Iwata Y, Suzuki K, Nakamura K, Ueki T, Minabe Y, Ouchi Y. Effects of brain amyloid deposition and reduced glucose metabolism on the default mode of brain function in normal aging. J Neurosci. 2011;31:11193–9.CrossRef Kikuchi M, Hirosawa T, Yokokura M, Yagi S, Mori N, Yoshikawa E, Yoshihara Y, Sugihara G, Takebayashi K, Iwata Y, Suzuki K, Nakamura K, Ueki T, Minabe Y, Ouchi Y. Effects of brain amyloid deposition and reduced glucose metabolism on the default mode of brain function in normal aging. J Neurosci. 2011;31:11193–9.CrossRef
14.
Zurück zum Zitat Yokokura M, Mori N, Yagi S, Yoshikawa E, Kikuchi M, Yoshihara Y, Wakuda T, Sugihara G, Takebayashi K, Suda S, Iwata Y, Ueki T, Tsuchiya KJ, Suzuki K, Nakamura K, Ouchi Y. In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2011;38:343–51.CrossRef Yokokura M, Mori N, Yagi S, Yoshikawa E, Kikuchi M, Yoshihara Y, Wakuda T, Sugihara G, Takebayashi K, Suda S, Iwata Y, Ueki T, Tsuchiya KJ, Suzuki K, Nakamura K, Ouchi Y. In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2011;38:343–51.CrossRef
15.
Zurück zum Zitat Bunai T, Kakimoto A, Yoshikawa E, Terada T, Ouchi Y. Biopathological significance of early-phase amyloid imaging in the spectrum of Alzheimer’s disease. J Alzheimers Dis. 2019;69:529–38.CrossRef Bunai T, Kakimoto A, Yoshikawa E, Terada T, Ouchi Y. Biopathological significance of early-phase amyloid imaging in the spectrum of Alzheimer’s disease. J Alzheimers Dis. 2019;69:529–38.CrossRef
16.
Zurück zum Zitat Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B. Current concepts in mild cognitive impairment. Arch Neurol. 2001;58:1985–92.CrossRef Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B. Current concepts in mild cognitive impairment. Arch Neurol. 2001;58:1985–92.CrossRef
17.
Zurück zum Zitat McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology. 1984;34:939–44.CrossRef McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology. 1984;34:939–44.CrossRef
18.
Zurück zum Zitat Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, Freedman M, Kertesz A, Robert PH, Albert M, Boone K, Miller BL, Cummings J, Benson DF. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51:1546–54.CrossRef Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, Freedman M, Kertesz A, Robert PH, Albert M, Boone K, Miller BL, Cummings J, Benson DF. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51:1546–54.CrossRef
19.
Zurück zum Zitat Talairach J, Szikla G. Application of stereotactic concepts to the surgery of epilepsy. Acta Neurochir Suppl (Wien). 1980;30:35–54.CrossRef Talairach J, Szikla G. Application of stereotactic concepts to the surgery of epilepsy. Acta Neurochir Suppl (Wien). 1980;30:35–54.CrossRef
20.
Zurück zum Zitat Minoshima S, Koeppe RA, Frey KA, Ishihara M, Kuhl DE. Stereotactic PET atlas of the human brain: aid for visual interpretation of functional brain images. J Nucl Med. 1994;35:949–54.PubMed Minoshima S, Koeppe RA, Frey KA, Ishihara M, Kuhl DE. Stereotactic PET atlas of the human brain: aid for visual interpretation of functional brain images. J Nucl Med. 1994;35:949–54.PubMed
21.
Zurück zum Zitat Falk T, Mai D, Bensch R, Cicek O, Abdulkadir A, Marrakchi Y, Bohm A, Deubner J, Jackel Z, Seiwald K, Dovzhenko A, Tietz O, Dal Bosco C, Walsh S, Saltukoglu D, Tay TL, Prinz M, Palme K, Simons M, Diester I, Brox T, Ronneberger O. U-Net: deep learning for cell counting, detection, and morphometry. Nat Methods. 2019;16:67–70.CrossRef Falk T, Mai D, Bensch R, Cicek O, Abdulkadir A, Marrakchi Y, Bohm A, Deubner J, Jackel Z, Seiwald K, Dovzhenko A, Tietz O, Dal Bosco C, Walsh S, Saltukoglu D, Tay TL, Prinz M, Palme K, Simons M, Diester I, Brox T, Ronneberger O. U-Net: deep learning for cell counting, detection, and morphometry. Nat Methods. 2019;16:67–70.CrossRef
22.
Zurück zum Zitat Norman B, Pedoia V, Majumdar S. Use of 2D U-net convolutional neural networks for automated cartilage and meniscus segmentation of knee mr imaging data to determine relaxometry and morphometry. Radiology. 2018;288:177–85.CrossRef Norman B, Pedoia V, Majumdar S. Use of 2D U-net convolutional neural networks for automated cartilage and meniscus segmentation of knee mr imaging data to determine relaxometry and morphometry. Radiology. 2018;288:177–85.CrossRef
24.
Zurück zum Zitat Zhou Z, Zhou L, Shen K. Dilated conditional GAN for bone suppression in chest radiographs with enforced semantic features. Med Phys. 2020;47:6207–15.CrossRef Zhou Z, Zhou L, Shen K. Dilated conditional GAN for bone suppression in chest radiographs with enforced semantic features. Med Phys. 2020;47:6207–15.CrossRef
25.
Zurück zum Zitat Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13:600–12.CrossRef Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13:600–12.CrossRef
26.
Zurück zum Zitat Liebgott A, Hindere D, Armanious K, Bartler A, Nikolaou K, Gatidis S, Yangl B (2019) in 2019 27th European Signal Processing Conference (EUSIPCO) IEEE, pp. 1–5. Liebgott A, Hindere D, Armanious K, Bartler A, Nikolaou K, Gatidis S, Yangl B (2019) in 2019 27th European Signal Processing Conference (EUSIPCO) IEEE, pp. 1–5.
27.
Zurück zum Zitat Hore A, Ziou D (2010) in 2010 20th international conference on pattern recognition IEEE, pp. 2366–2369. Hore A, Ziou D (2010) in 2010 20th international conference on pattern recognition IEEE, pp. 2366–2369.
28.
Zurück zum Zitat Barthel H, Gertz HJ, Dresel S, Peters O, Bartenstein P, Buerger K, Hiemeyer F, Wittemer-Rump SM, Seibyl J, Reininger C, Sabri O. Cerebral amyloid-beta PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol. 2011;10:424–35.CrossRef Barthel H, Gertz HJ, Dresel S, Peters O, Bartenstein P, Buerger K, Hiemeyer F, Wittemer-Rump SM, Seibyl J, Reininger C, Sabri O. Cerebral amyloid-beta PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol. 2011;10:424–35.CrossRef
29.
Zurück zum Zitat Karras T, Aila T, Laine S, Lehtinen J (2017) Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196. Karras T, Aila T, Laine S, Lehtinen J (2017) Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:​1710.​10196.
30.
Zurück zum Zitat Ravi D, Alexander DC, Oxtoby NP, Initiative AsDN (2019) in International Conference on Medical Image Computing and Computer-Assisted Intervention Springer, pp. 164–172. Ravi D, Alexander DC, Oxtoby NP, Initiative AsDN (2019) in International Conference on Medical Image Computing and Computer-Assisted Intervention Springer, pp. 164–172.
31.
Zurück zum Zitat Yoon HJ, Kim BS, Jeong JH, Kim GH, Park HK, Chun MY, Ha S. Dual-phase (18)F-florbetaben PET provides cerebral perfusion proxy along with beta-amyloid burden in Alzheimer’s disease. Neuroimage Clin. 2021;31: 102773.CrossRef Yoon HJ, Kim BS, Jeong JH, Kim GH, Park HK, Chun MY, Ha S. Dual-phase (18)F-florbetaben PET provides cerebral perfusion proxy along with beta-amyloid burden in Alzheimer’s disease. Neuroimage Clin. 2021;31: 102773.CrossRef
32.
Zurück zum Zitat Tosun AB, Pullara F, Becich MJ, Taylor DL, Fine JL, Chennubhotla SC. Explainable AI (xAI) for anatomic pathology. Adv Anat Pathol. 2020;27:241–50.CrossRef Tosun AB, Pullara F, Becich MJ, Taylor DL, Fine JL, Chennubhotla SC. Explainable AI (xAI) for anatomic pathology. Adv Anat Pathol. 2020;27:241–50.CrossRef
33.
Zurück zum Zitat Minoshima S, Drzezga AE, Barthel H, Bohnen N, Djekidel M, Lewis DH, Mathis CA, McConathy J, Nordberg A, Sabri O, Seibyl JP, Stokes MK, Van Laere K. SNMMI procedure standard/EANM practice guideline for amyloid PET imaging of the brain 1.0. J Nucl Med. 2016;57:1316–22.CrossRef Minoshima S, Drzezga AE, Barthel H, Bohnen N, Djekidel M, Lewis DH, Mathis CA, McConathy J, Nordberg A, Sabri O, Seibyl JP, Stokes MK, Van Laere K. SNMMI procedure standard/EANM practice guideline for amyloid PET imaging of the brain 1.0. J Nucl Med. 2016;57:1316–22.CrossRef
34.
Zurück zum Zitat Lee S, Jung JH, Kim D, Lim HK, Park MA, Kim G, So M, Yoo SK, Ye BS, Choi Y, Yun M. PET/CT for brain amyloid: a feasibility study for scan time reduction by deep learning. Clin Nucl Med. 2021;46:e133–40.CrossRef Lee S, Jung JH, Kim D, Lim HK, Park MA, Kim G, So M, Yoo SK, Ye BS, Choi Y, Yun M. PET/CT for brain amyloid: a feasibility study for scan time reduction by deep learning. Clin Nucl Med. 2021;46:e133–40.CrossRef
Metadaten
Titel
Deep-learning prediction of amyloid deposition from early-phase amyloid positron emission tomography imaging
verfasst von
Seisaku Komori
Donna J. Cross
Megan Mills
Yasuomi Ouchi
Sadahiko Nishizawa
Hiroyuki Okada
Takashi Norikane
Tanyaluck Thientunyakit
Yoshimi Anzai
Satoshi Minoshima
Publikationsdatum
01.08.2022
Verlag
Springer Nature Singapore
Erschienen in
Annals of Nuclear Medicine / Ausgabe 10/2022
Print ISSN: 0914-7187
Elektronische ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-022-01775-z

Weitere Artikel der Ausgabe 10/2022

Annals of Nuclear Medicine 10/2022 Zur Ausgabe