Skip to main content
Erschienen in:

06.08.2022 | Original Article

Deep learning predicts resistance to neoadjuvant chemotherapy for locally advanced gastric cancer: a multicenter study

verfasst von: Jiayi Zhang, Yanfen Cui, Kaikai Wei, Zhenhui Li, Dandan Li, Ruirui Song, Jialiang Ren, Xin Gao, Xiaotang Yang

Erschienen in: Gastric Cancer | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten

Abstract

Background

Accurate pre-treatment prediction of neoadjuvant chemotherapy (NACT) resistance in patients with locally advanced gastric cancer (LAGC) is essential for timely surgeries and optimized treatments. We aim to evaluate the effectiveness of deep learning (DL) on computed tomography (CT) images in predicting NACT resistance in LAGC patients.

Methods

A total of 633 LAGC patients receiving NACT from three hospitals were included in this retrospective study. The training and internal validation cohorts were randomly selected from center 1, comprising 242 and 104 patients, respectively. The external validation cohort 1 comprised 128 patients from center 2, and the external validation cohort 2 comprised 159 patients from center 3. First, a DL model was developed using ResNet-50 to predict NACT resistance in LAGC patients, and the gradient-weighted class activation mapping (Grad-CAM) was assessed for visualization. Then, an integrated model was constructed by combing the DL signature and clinical characteristics. Finally, the performance was tested in internal and external validation cohorts using area under the receiver operating characteristic (ROC) curves (AUC).

Results

The DL model achieved AUCs of 0.808 (95% CI 0.724–0.893), 0.755 (95% CI 0.660–0.850), and 0.752 (95% CI 0.678–0.825) in validation cohorts, respectively, which were higher than those of the clinical model. Furthermore, the integrated model performed significantly better than the clinical model (P < 0.05).

Conclusions

A CT-based model using DL showed promising performance for predicting NACT resistance in LAGC patients, which could provide valuable information in terms of individualized treatment.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. 2018;68(6):394–424.PubMed Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. 2018;68(6):394–424.PubMed
2.
Zurück zum Zitat Roukos D. Current status and future perspectives in gastric cancer management. Cancer Treat Rev. 2000;26(4):243–55.CrossRef Roukos D. Current status and future perspectives in gastric cancer management. Cancer Treat Rev. 2000;26(4):243–55.CrossRef
3.
Zurück zum Zitat Ang J, Hu L, Huang P-T, Wu J-X, Huang L-N, Cao C-H, Zheng Y-X, Chen L. Contrast-enhanced ultrasonography assessment of gastric cancer response to neoadjuvant chemotherapy. World J Gastroenterol WJG. 2012;18(47):7026.CrossRef Ang J, Hu L, Huang P-T, Wu J-X, Huang L-N, Cao C-H, Zheng Y-X, Chen L. Contrast-enhanced ultrasonography assessment of gastric cancer response to neoadjuvant chemotherapy. World J Gastroenterol WJG. 2012;18(47):7026.CrossRef
4.
Zurück zum Zitat Wang X-Z, Zeng Z-Y, Ye X, Sun J, Zhang Z-M, Kang W-M. Interpretation of the development of neoadjuvant therapy for gastric cancer based on the vicissitudes of the NCCN guidelines. World J Gast Oncol. 2020;12(1):37.CrossRef Wang X-Z, Zeng Z-Y, Ye X, Sun J, Zhang Z-M, Kang W-M. Interpretation of the development of neoadjuvant therapy for gastric cancer based on the vicissitudes of the NCCN guidelines. World J Gast Oncol. 2020;12(1):37.CrossRef
5.
Zurück zum Zitat Fu J, Tang L, Li Z-Y, Li X-T, Zhu H-F, Sun Y-S, Ji J-F. Diffusion kurtosis imaging in the prediction of poor responses of locally advanced gastric cancer to neoadjuvant chemotherapy. Eur J Radiol. 2020;128: 108974.CrossRef Fu J, Tang L, Li Z-Y, Li X-T, Zhu H-F, Sun Y-S, Ji J-F. Diffusion kurtosis imaging in the prediction of poor responses of locally advanced gastric cancer to neoadjuvant chemotherapy. Eur J Radiol. 2020;128: 108974.CrossRef
6.
Zurück zum Zitat Li Z, Zhang D, Dai Y, Dong J, Wu L, Li Y, Cheng Z, Ding Y, Liu Z. Computed tomography-based radiomics for prediction of neoadjuvant chemotherapy outcomes in locally advanced gastric cancer: a pilot study. Chin J Cancer Res. 2018;30(4):406.CrossRef Li Z, Zhang D, Dai Y, Dong J, Wu L, Li Y, Cheng Z, Ding Y, Liu Z. Computed tomography-based radiomics for prediction of neoadjuvant chemotherapy outcomes in locally advanced gastric cancer: a pilot study. Chin J Cancer Res. 2018;30(4):406.CrossRef
7.
Zurück zum Zitat Lauridsen CA, Falletin E, Hansen ML, Law I, Federspiel B, Bæksgaard L, Svendsen LB, Nielsen MB. Computed Tomography (CT) Perfusion as an early prognostic marker for treatment response to neoadjuvant chemotherapy in gastroesophageal junction cancer and gastric cancer-a prospective study. PLoS ONE. 2014;9:1–10. Lauridsen CA, Falletin E, Hansen ML, Law I, Federspiel B, Bæksgaard L, Svendsen LB, Nielsen MB. Computed Tomography (CT) Perfusion as an early prognostic marker for treatment response to neoadjuvant chemotherapy in gastroesophageal junction cancer and gastric cancer-a prospective study. PLoS ONE. 2014;9:1–10.
8.
Zurück zum Zitat Virendra K, Yuhua G, Satrajit B. Radiomics: the process and the challenges. Magn Reson Imaging. 2012;30(9):1234–48.CrossRef Virendra K, Yuhua G, Satrajit B. Radiomics: the process and the challenges. Magn Reson Imaging. 2012;30(9):1234–48.CrossRef
10.
Zurück zum Zitat Wang W, Peng Y, Feng X, Zhao Y, Seeruttun SR, Zhang J, Cheng Z, Li Y, Liu Z, Zhou Z. Development and validation of a computed tomography-based radiomics signature to predict response to neoadjuvant chemotherapy for locally advanced gastric cancer. JAMA Netw Open. 2021;4(8):e2121143–e2121143.CrossRef Wang W, Peng Y, Feng X, Zhao Y, Seeruttun SR, Zhang J, Cheng Z, Li Y, Liu Z, Zhou Z. Development and validation of a computed tomography-based radiomics signature to predict response to neoadjuvant chemotherapy for locally advanced gastric cancer. JAMA Netw Open. 2021;4(8):e2121143–e2121143.CrossRef
11.
Zurück zum Zitat Sun K-Y, Hu H-T, Chen S-L, Ye J-N, Li G-H, Chen L-D, Peng J-J, Feng S-T, Yuan Y-J, Hou X. CT-based radiomics scores predict response to neoadjuvant chemotherapy and survival in patients with gastric cancer. BMC Cancer. 2020;20:1–11.CrossRef Sun K-Y, Hu H-T, Chen S-L, Ye J-N, Li G-H, Chen L-D, Peng J-J, Feng S-T, Yuan Y-J, Hou X. CT-based radiomics scores predict response to neoadjuvant chemotherapy and survival in patients with gastric cancer. BMC Cancer. 2020;20:1–11.CrossRef
12.
Zurück zum Zitat Kather JN, Krisam J, Charoentong P, Luedde T, Herpel E, Weis C-A, Gaiser T, Marx A, Valous NA, Ferber D. Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study. PLoS Med. 2019;16(1): e1002730.CrossRef Kather JN, Krisam J, Charoentong P, Luedde T, Herpel E, Weis C-A, Gaiser T, Marx A, Valous NA, Ferber D. Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study. PLoS Med. 2019;16(1): e1002730.CrossRef
13.
Zurück zum Zitat Peng H, Dong D, Fang M-J, Li L, Tang L-L, Chen L, Li W-F, Mao Y-P, Fan W, Liu L-Z. Prognostic value of deep learning PET/CT-based radiomics: potential role for future individual induction chemotherapy in advanced nasopharyngeal carcinoma. Clin Cancer Res. 2019;25(14):4271–9.CrossRef Peng H, Dong D, Fang M-J, Li L, Tang L-L, Chen L, Li W-F, Mao Y-P, Fan W, Liu L-Z. Prognostic value of deep learning PET/CT-based radiomics: potential role for future individual induction chemotherapy in advanced nasopharyngeal carcinoma. Clin Cancer Res. 2019;25(14):4271–9.CrossRef
14.
Zurück zum Zitat Mobadersany P, Yousefi S, Amgad M, Gutman DA, Barnholtz-Sloan JS, Vega JEV, Brat DJ, Cooper LA. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Natl Acad Sci. 2018;115(13):E2970–9.CrossRef Mobadersany P, Yousefi S, Amgad M, Gutman DA, Barnholtz-Sloan JS, Vega JEV, Brat DJ, Cooper LA. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Natl Acad Sci. 2018;115(13):E2970–9.CrossRef
15.
Zurück zum Zitat Jiang Y, Liang X, Wang W, Chen C, Yuan Q, Zhang X, Li N, Chen H, Yu J, Xie Y. Noninvasive prediction of occult peritoneal metastasis in gastric cancer using deep learning. JAMA Netw Open. 2021;4(1):e2032269–e2032269.CrossRef Jiang Y, Liang X, Wang W, Chen C, Yuan Q, Zhang X, Li N, Chen H, Yu J, Xie Y. Noninvasive prediction of occult peritoneal metastasis in gastric cancer using deep learning. JAMA Netw Open. 2021;4(1):e2032269–e2032269.CrossRef
16.
Zurück zum Zitat Jin C, Jiang Y, Yu H, Wang W, Li B, Chen C, Yuan Q, Hu Y, Xu Y, Zhou Z. Deep learning analysis of the primary tumour and the prediction of lymph node metastases in gastric cancer. Br J Surg. 2021;108(5):542–9.CrossRef Jin C, Jiang Y, Yu H, Wang W, Li B, Chen C, Yuan Q, Hu Y, Xu Y, Zhou Z. Deep learning analysis of the primary tumour and the prediction of lymph node metastases in gastric cancer. Br J Surg. 2021;108(5):542–9.CrossRef
17.
Zurück zum Zitat Gao Y, Zhang Z-D, Li S, Guo Y-T, Wu Q-Y, Liu S-H, Yang S-J, Ding L, Zhao B-C, Li S. Deep neural network-assisted computed tomography diagnosis of metastatic lymph nodes from gastric cancer. Chin Med J. 2019;132(23):2804.CrossRef Gao Y, Zhang Z-D, Li S, Guo Y-T, Wu Q-Y, Liu S-H, Yang S-J, Ding L, Zhao B-C, Li S. Deep neural network-assisted computed tomography diagnosis of metastatic lymph nodes from gastric cancer. Chin Med J. 2019;132(23):2804.CrossRef
18.
Zurück zum Zitat Amin MBES, Greene F, et al. AJCC Cancer Staging Manual. 8th ed. New York: Springer; 2017.CrossRef Amin MBES, Greene F, et al. AJCC Cancer Staging Manual. 8th ed. New York: Springer; 2017.CrossRef
24.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016. pp 770–778 He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016. pp 770–778
25.
Zurück zum Zitat Dao T, Gu A, Ratner AJ, Smith V, Sa CD, Ré C. A Kernel Theory of Modern Data Augmentation. PMLR, 2019. pp 1528–1537 Dao T, Gu A, Ratner AJ, Smith V, Sa CD, Ré C. A Kernel Theory of Modern Data Augmentation. PMLR, 2019. pp 1528–1537
26.
Zurück zum Zitat Pan SJ, Qiang Y. A Survey on Transfer Learning. IEEE Trans Knowl Data Eng. 2010;22(10):1345–59.CrossRef Pan SJ, Qiang Y. A Survey on Transfer Learning. IEEE Trans Knowl Data Eng. 2010;22(10):1345–59.CrossRef
27.
Zurück zum Zitat Steiner B, Devito Z, Chintala S, Gross S, Paszke A, Massa F, Lerer A, Chanan G, Lin Z, Yang E. PyTorch: an imperative style, high-performance deep learning library. Neural information processing systems; 2019. p. 8026–37. Steiner B, Devito Z, Chintala S, Gross S, Paszke A, Massa F, Lerer A, Chanan G, Lin Z, Yang E. PyTorch: an imperative style, high-performance deep learning library. Neural information processing systems; 2019. p. 8026–37.
28.
Zurück zum Zitat Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A Learning deep features for discriminative localization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016. pp 2921–2929 Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A Learning deep features for discriminative localization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016. pp 2921–2929
29.
Zurück zum Zitat Sauerbrei W, Boulesteix A-L, Binder H. Stability investigations of multivariable regression models derived from low-and high-dimensional data. J Biopharm Stat. 2011;21(6):1206–31.CrossRef Sauerbrei W, Boulesteix A-L, Binder H. Stability investigations of multivariable regression models derived from low-and high-dimensional data. J Biopharm Stat. 2011;21(6):1206–31.CrossRef
30.
Zurück zum Zitat Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36.CrossRef Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36.CrossRef
31.
Zurück zum Zitat DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.CrossRef DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.CrossRef
32.
Zurück zum Zitat Cheong J-H, Yang H-K, Kim H, Kim WH, Kim Y-W, Kook M-C, Park Y-K, Kim H-H, Lee HS, Lee KH. Predictive test for chemotherapy response in resectable gastric cancer: a multi-cohort, retrospective analysis. Lancet Oncol. 2018;19(5):629–38.CrossRef Cheong J-H, Yang H-K, Kim H, Kim WH, Kim Y-W, Kook M-C, Park Y-K, Kim H-H, Lee HS, Lee KH. Predictive test for chemotherapy response in resectable gastric cancer: a multi-cohort, retrospective analysis. Lancet Oncol. 2018;19(5):629–38.CrossRef
33.
Zurück zum Zitat Wu J, Li B, Sun X, Cao G, Rubin DL, Napel S, Ikeda DM, Kurian AW, Li R. Heterogeneous enhancement patterns of tumor-adjacent parenchyma at MR imaging are associated with dysregulated signaling pathways and poor survival in breast cancer. Radiology. 2017;285(2):401–13.CrossRef Wu J, Li B, Sun X, Cao G, Rubin DL, Napel S, Ikeda DM, Kurian AW, Li R. Heterogeneous enhancement patterns of tumor-adjacent parenchyma at MR imaging are associated with dysregulated signaling pathways and poor survival in breast cancer. Radiology. 2017;285(2):401–13.CrossRef
34.
Zurück zum Zitat Wu J, Cao G, Sun X, Lee J, Rubin DL, Napel S, Kurian AW, Daniel BL, Li R. Intratumoral spatial heterogeneity at perfusion MR imaging predicts recurrence-free survival in locally advanced breast cancer treated with neoadjuvant chemotherapy. Radiology. 2018;288(1):26–35.CrossRef Wu J, Cao G, Sun X, Lee J, Rubin DL, Napel S, Kurian AW, Daniel BL, Li R. Intratumoral spatial heterogeneity at perfusion MR imaging predicts recurrence-free survival in locally advanced breast cancer treated with neoadjuvant chemotherapy. Radiology. 2018;288(1):26–35.CrossRef
35.
Zurück zum Zitat Feng F, Tian Y, Xu G, Liu Z, Liu S, Zheng G, Guo M, Lian X, Fan D, Zhang H. Diagnostic and prognostic value of CEA, CA19–9, AFP and CA125 for early gastric cancer. BMC Cancer. 2017;17(1):737.CrossRef Feng F, Tian Y, Xu G, Liu Z, Liu S, Zheng G, Guo M, Lian X, Fan D, Zhang H. Diagnostic and prognostic value of CEA, CA19–9, AFP and CA125 for early gastric cancer. BMC Cancer. 2017;17(1):737.CrossRef
36.
Zurück zum Zitat Chen XZ, Zhang WK, Yang K, Wang LL, Liu J, Wang L, Hu JK, Zhang B, Chen ZX, Chen JP. Correlation between serum CA724 and gastric cancer: multiple analyses based on Chinese population. Mol Biol Rep. 2012;39(9):9031–9.CrossRef Chen XZ, Zhang WK, Yang K, Wang LL, Liu J, Wang L, Hu JK, Zhang B, Chen ZX, Chen JP. Correlation between serum CA724 and gastric cancer: multiple analyses based on Chinese population. Mol Biol Rep. 2012;39(9):9031–9.CrossRef
38.
Zurück zum Zitat Takekazu Y, Shunkichi K, Akira K, Koichi K, Takayoshi H, Norishige T, Masakazu M. Tumor markers CEA, CA19-9 and CA125 in monitoring of response to systemic chemotherapy in patients with advanced gastric cancer. Jpn J Clin Oncol. 1999;11:550–5. Takekazu Y, Shunkichi K, Akira K, Koichi K, Takayoshi H, Norishige T, Masakazu M. Tumor markers CEA, CA19-9 and CA125 in monitoring of response to systemic chemotherapy in patients with advanced gastric cancer. Jpn J Clin Oncol. 1999;11:550–5.
39.
Zurück zum Zitat Sun Z, Zhang N. Clinical evaluation of CEA, CA19-9, CA72-4 and CA125 in gastric cancer patients with neoadjuvant chemotherapy. World J Surg Oncol. 2014;12(1):397.CrossRef Sun Z, Zhang N. Clinical evaluation of CEA, CA19-9, CA72-4 and CA125 in gastric cancer patients with neoadjuvant chemotherapy. World J Surg Oncol. 2014;12(1):397.CrossRef
Metadaten
Titel
Deep learning predicts resistance to neoadjuvant chemotherapy for locally advanced gastric cancer: a multicenter study
verfasst von
Jiayi Zhang
Yanfen Cui
Kaikai Wei
Zhenhui Li
Dandan Li
Ruirui Song
Jialiang Ren
Xin Gao
Xiaotang Yang
Publikationsdatum
06.08.2022
Verlag
Springer Nature Singapore
Erschienen in
Gastric Cancer / Ausgabe 6/2022
Print ISSN: 1436-3291
Elektronische ISSN: 1436-3305
DOI
https://doi.org/10.1007/s10120-022-01328-3

Neu im Fachgebiet Chirurgie

Welcher Zugangsweg ist besser für den interventionellen Mitralklappenersatz?

Bisher wird für den interventionellen Mitralklappenersatz standardmäßig der transapikale Zugangsweg gewählt. In einer Registeranalyse hat dieser in puncto Sicherheit allerdings den Kürzeren gezogen.

Lohnt sich die Karotis-Revaskularisation?

Die medikamentöse Therapie für Menschen mit Karotisstenosen hat sich in den vergangenen Dekaden verbessert. Braucht es also noch einen invasiven Eingriff zur Revaskularisation der Halsschlagader bei geringem bis moderatem Risiko für einen ipsilateralen Schlaganfall?

Höhere Dosis von Dexamethason senkt Überlebenschancen

Personen mit Hirnmetastasen, die perioperativ höhere kumulative Dosen von Dexamethason erhalten, haben eine schlechtere Prognose. Um die Ergebnisse zu verbessern, bedarf es strengerer Dosierungsschemata.

Appendektomie erhält Remission bei Colitis ulcerosa

Wird der Wurmfortsatz bei Personen mit Colitis ulcerosa entfernt, ist die Rückfallrate um ein Drittel geringer als unter konservativer Behandlung. Auch die Lebensqualität verbessert sich und der Bedarf an Medikamenten nimmt ab.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.