Skip to main content
Erschienen in:

02.08.2023 | Computed Tomography

Deep learning reconstruction CT for liver metastases: low-dose dual-energy vs standard-dose single-energy

verfasst von: Peijie Lyu, Zhen Li, Yan Chen, Huixia Wang, Nana Liu, Jie Liu, Pengchao Zhan, Xing Liu, Bo Shang, Luotong Wang, Jianbo Gao

Erschienen in: European Radiology | Ausgabe 1/2024

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To assess image quality and liver metastasis detection of reduced-dose dual-energy CT (DECT) with deep learning image reconstruction (DLIR) compared to standard-dose single-energy CT (SECT) with DLIR or iterative reconstruction (IR).

Methods

In this prospective study, two groups of 40 participants each underwent abdominal contrast-enhanced scans with full-dose SECT (120-kVp images, DLIR and IR algorithms) or reduced-dose DECT (40- to 60-keV virtual monochromatic images [VMIs], DLIR algorithm), with 122 and 106 metastases, respectively. Groups were matched by age, sex ratio, body mass index, and cross-sectional area. Noise power spectrum of liver images and task-based transfer function of metastases were calculated to assess the noise texture and low-contrast resolution. The image noise, signal-to-noise ratios (SNR) of liver and portal vein, liver-to-lesion contrast-to-noise ratio (LLR), lesion conspicuity, lesion detection rate, and the subjective image quality metrics were compared between groups on 1.25-mm reconstructed images.

Results

Compared to 120-kVp images with IR, 40- and 50-keV VMIs with DLIR showed similar noise texture and LLR, similar or higher image noise and low-contrast resolution, improved SNR and lesion conspicuity, and similar or better perceptual image quality. When compared to 120-kVp images with DLIR, 50-keV VMIs with DLIR had similar low-contrast resolution, SNR, LLR, lesion conspicuity, and perceptual image quality but lower frequency noise texture and higher image noise. For the detection of hepatic metastases, reduced-dose DECT by 34% maintained observer lesion detection rates.

Conclusion

DECT assisted with DLIR enables a 34% dose reduction for detecting hepatic metastases while maintaining comparable perceptual image quality to full-dose SECT.

Clinical relevance statement

Reduced-dose dual-energy CT with deep learning image reconstruction is as accurate as standard-dose single-energy CT for the detection of liver metastases and saves more than 30% of the radiation dose.

Key Points

• The 40- and 50-keV virtual monochromatic images (VMIs) with deep learning image reconstruction (DLIR) improved lesion conspicuity compared with 120-kVp images with iterative reconstruction while providing similar or better perceptual image quality.
• The 50-keV VMIs with DLIR provided comparable perceptual image quality and lesion conspicuity to 120-kVp images with DLIR.
• The reduction of radiation by 34% by DLIR in low-keV VMIs is clinically sufficient for detecting low-contrast hepatic metastases.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Hsieh J, Liu E, Nett B, Tang J, Thibault J-B, Sahney S (2019) A new era of image reconstruction: TrueFidelity™. White Paper (JB68676XX), GE Healthcare Hsieh J, Liu E, Nett B, Tang J, Thibault J-B, Sahney S (2019) A new era of image reconstruction: TrueFidelity™. White Paper (JB68676XX), GE Healthcare
7.
Zurück zum Zitat Matsukiyo R, Ohno Y, Matsuyama T et al (2020) Deep learning-based and hybrid-type iterative reconstructions for CT: comparison of capability for quantitative and qualitative image quality improvements and small vessel evaluation at dynamic CE-abdominal CT with ultra-high and standard resolutions. Jpn J Radiol 39:186–197. https://doi.org/10.1007/s11604-020-01045-wCrossRefPubMed Matsukiyo R, Ohno Y, Matsuyama T et al (2020) Deep learning-based and hybrid-type iterative reconstructions for CT: comparison of capability for quantitative and qualitative image quality improvements and small vessel evaluation at dynamic CE-abdominal CT with ultra-high and standard resolutions. Jpn J Radiol 39:186–197. https://​doi.​org/​10.​1007/​s11604-020-01045-wCrossRefPubMed
22.
23.
Zurück zum Zitat Son W, Kim M, Hwang JY et al (2022) Comparison of a deep learning-based reconstruction algorithm with filtered back projection and iterative reconstruction algorithms for pediatric abdominopelvic CT. Korean J Radiol 23:752–762CrossRefPubMedPubMedCentral Son W, Kim M, Hwang JY et al (2022) Comparison of a deep learning-based reconstruction algorithm with filtered back projection and iterative reconstruction algorithms for pediatric abdominopelvic CT. Korean J Radiol 23:752–762CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Boone JMSK, Cody DD, McCollough CH, McNitt-Gray MF, Toth TL (2011) Size-specific dose estimates (SSDE) in pediatric and adult body CT examinations. In: Report of Am Assoc Phys Med AAPM Task Group 204. American Association of Physicists in Medicine, College Park Boone JMSK, Cody DD, McCollough CH, McNitt-Gray MF, Toth TL (2011) Size-specific dose estimates (SSDE) in pediatric and adult body CT examinations. In: Report of Am Assoc Phys Med AAPM Task Group 204. American Association of Physicists in Medicine, College Park
29.
Zurück zum Zitat Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174 PMID: 843571CrossRefPubMed Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174 PMID: 843571CrossRefPubMed
32.
Zurück zum Zitat Masuda S, Yamada Y, Minamishima K, Owaki Y, Yamazaki A, Jinzaki M (2022) Impact of noise reduction on radiation dose reduction potential of virtual monochromatic spectral images: comparison of phantom images with conventional 120 kVp images using deep learning image reconstruction and hybrid iterative reconstruction. Eur J Radiol 149:110198. https://doi.org/10.1016/j.ejrad.2022.110198CrossRefPubMed Masuda S, Yamada Y, Minamishima K, Owaki Y, Yamazaki A, Jinzaki M (2022) Impact of noise reduction on radiation dose reduction potential of virtual monochromatic spectral images: comparison of phantom images with conventional 120 kVp images using deep learning image reconstruction and hybrid iterative reconstruction. Eur J Radiol 149:110198. https://​doi.​org/​10.​1016/​j.​ejrad.​2022.​110198CrossRefPubMed
Metadaten
Titel
Deep learning reconstruction CT for liver metastases: low-dose dual-energy vs standard-dose single-energy
verfasst von
Peijie Lyu
Zhen Li
Yan Chen
Huixia Wang
Nana Liu
Jie Liu
Pengchao Zhan
Xing Liu
Bo Shang
Luotong Wang
Jianbo Gao
Publikationsdatum
02.08.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 1/2024
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-023-10033-3

Neu im Fachgebiet Radiologie

Ab sofort gelten die neuen Verordnungsausnahmen für Lipidsenker

Freie Fahrt für Lipidsenker? Das nicht, doch mit niedrigerem Schwellenwert fürs Infarktrisiko und neuen Indikationen hat der G-BA die Verordnungs-Handbremse ein gutes Stück weit gelockert.

Abdominale CT bei Kindern: 40% mit Zufallsbefunden

Wird bei Kindern mit stumpfem Trauma eine CT des Bauchraums veranlasst, sind in rund 40% der Fälle Auffälligkeiten zu sehen, die nichts mit dem Trauma zu tun haben. Die allerwenigsten davon sind klinisch relevant.

Genügt die biparametrische MRT für die Prostatadiagnostik?

Die multiparametrische Magnetresonanztomografie hat einen festen Platz im Screening auf klinisch signifikante Prostatakarzinome. Ob auch ein biparametrisches Vorgehen ausreicht, ist in einer Metaanalyse untersucht worden.

Höhere Trefferquoten bei Brustkrebsscreening dank KI?

Künstliche Intelligenz unterstützt bei der Auswertung von Mammografie-Screenings und senkt somit den Arbeitsaufwand für Radiologen. Wie wirken sich diese Technologien auf die Trefferquote und die Falsch-positiv-Rate aus? Das hat jetzt eine Studie aus Schweden untersucht.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.