Skip to main content
Erschienen in:

11.10.2023 | Ultrasound

Deep learning to assist composition classification and thyroid solid nodule diagnosis: a multicenter diagnostic study

verfasst von: Chen Chen, Yitao Jiang, Jincao Yao, Min Lai, Yuanzhen Liu, Xianping Jiang, Di Ou, Bojian Feng, Lingyan Zhou, Jinfeng Xu, Linghu Wu, Yuli Zhou, Wenwen Yue, Fajin Dong, Dong Xu

Erschienen in: European Radiology | Ausgabe 4/2024

Einloggen, um Zugang zu erhalten

Abstract

Objectives

This study aimed to propose a deep learning (DL)–based framework for identifying the composition of thyroid nodules and assessing their malignancy risk.

Methods

We conducted a retrospective multicenter study using ultrasound images from four hospitals. Convolutional neural network (CNN) models were constructed to classify ultrasound images of thyroid nodules into solid and non-solid, as well as benign and malignant. A total of 11,201 images of 6784 nodules were used for training, validation, and testing. The area under the receiver-operating characteristic curve (AUC) was employed as the primary evaluation index.

Results

The models had AUCs higher than 0.91 in the benign and malignant grading of solid thyroid nodules, with the Inception-ResNet AUC being the highest at 0.94. In the test set, the best algorithm for identifying benign and malignant thyroid nodules had a sensitivity of 0.88, and a specificity of 0.86. In the human vs. DL test set, the best algorithm had a sensitivity of 0.93, and a specificity of 0.86. The Inception-ResNet model performed better than the senior physicians (p < 0.001). The sensitivity and specificity of the optimal model based on the external test set were 0.90 and 0.75, respectively.

Conclusions

This research demonstrates that CNNs can assist thyroid nodule diagnosis and reduce the rate of unnecessary fine-needle aspiration (FNA).

Clinical relevance statement

High-resolution ultrasound has led to increased detection of thyroid nodules. This results in unnecessary fine-needle aspiration and anxiety for patients whose nodules are benign. Deep learning can solve these problems to some extent.

Key Points

• Thyroid solid nodules have a high probability of malignancy.
• Our models can improve the differentiation between benign and malignant solid thyroid nodules.
• The differential performance of one model was superior to that of senior radiologists. Applying this could reduce the rate of unnecessary fine-needle aspiration of solid thyroid nodules.
Literatur
1.
Zurück zum Zitat Vaccarella S, Franceschi S, Bray F, Wild CP, Plummer M, Dal Maso L (2016) Worldwide thyroid-cancer epidemic? The increasing impact of overdiagnosis. N Engl J Med 375:614–617PubMed Vaccarella S, Franceschi S, Bray F, Wild CP, Plummer M, Dal Maso L (2016) Worldwide thyroid-cancer epidemic? The increasing impact of overdiagnosis. N Engl J Med 375:614–617PubMed
2.
Zurück zum Zitat Feng R-M, Zong Y-N, Cao S-M, Xu R-H (2019) Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? Cancer Commun (Lond) 39:22PubMed Feng R-M, Zong Y-N, Cao S-M, Xu R-H (2019) Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? Cancer Commun (Lond) 39:22PubMed
3.
Zurück zum Zitat Ma X, Zhang L (2022) Diagnosis of thyroid nodules based on image enhancement and deep neural networks. Comput Intell Neurosci 2022:5582029PubMedPubMedCentral Ma X, Zhang L (2022) Diagnosis of thyroid nodules based on image enhancement and deep neural networks. Comput Intell Neurosci 2022:5582029PubMedPubMedCentral
4.
Zurück zum Zitat Zhang X, Lee VCS, Rong J, Liu F, Kong H (2022) Multi-channel convolutional neural network architectures for thyroid cancer detection. PLoS One 17:e0262128PubMedPubMedCentral Zhang X, Lee VCS, Rong J, Liu F, Kong H (2022) Multi-channel convolutional neural network architectures for thyroid cancer detection. PLoS One 17:e0262128PubMedPubMedCentral
5.
Zurück zum Zitat Singh Ospina N, Brito JP, Maraka S et al (2016) Diagnostic accuracy of ultrasound-guided fine needle aspiration biopsy for thyroid malignancy: systematic review and meta-analysis. Endocrine 53:651–661PubMed Singh Ospina N, Brito JP, Maraka S et al (2016) Diagnostic accuracy of ultrasound-guided fine needle aspiration biopsy for thyroid malignancy: systematic review and meta-analysis. Endocrine 53:651–661PubMed
6.
Zurück zum Zitat Yoon JH, Moon HJ, Kim E-K, Kwak JY (2011) Inadequate cytology in thyroid nodules: should we repeat aspiration or follow-up? Ann Surg Oncol 18:1282–1289PubMed Yoon JH, Moon HJ, Kim E-K, Kwak JY (2011) Inadequate cytology in thyroid nodules: should we repeat aspiration or follow-up? Ann Surg Oncol 18:1282–1289PubMed
7.
Zurück zum Zitat Chan WK, Sun JH, Liou MJ et al (2021) Using deep convolutional neural networks for enhanced ultrasonographic image diagnosis of differentiated thyroid cancer. Biomedicines 9:1771PubMedPubMedCentral Chan WK, Sun JH, Liou MJ et al (2021) Using deep convolutional neural networks for enhanced ultrasonographic image diagnosis of differentiated thyroid cancer. Biomedicines 9:1771PubMedPubMedCentral
8.
Zurück zum Zitat Zhang D, Jiang F, Yin R et al (2021) A review of the role of the S-detect computer-aided diagnostic ultrasound system in the evaluation of benign and malignant breast and thyroid masses. Med Sci Monit 27:e931957PubMedPubMedCentral Zhang D, Jiang F, Yin R et al (2021) A review of the role of the S-detect computer-aided diagnostic ultrasound system in the evaluation of benign and malignant breast and thyroid masses. Med Sci Monit 27:e931957PubMedPubMedCentral
9.
Zurück zum Zitat Zhao D, Jing Y, Lin X, Zhang B (2021) The value of color Doppler ultrasound in the diagnosis of thyroid nodules: a systematic review and meta-analysis. Gland Surg 10:3369–3377PubMedPubMedCentral Zhao D, Jing Y, Lin X, Zhang B (2021) The value of color Doppler ultrasound in the diagnosis of thyroid nodules: a systematic review and meta-analysis. Gland Surg 10:3369–3377PubMedPubMedCentral
10.
Zurück zum Zitat Zhou Y, Chen H, Qiang J, Wang D (2021) Systematic review and meta-analysis of ultrasonic elastography in the diagnosis of benign and malignant thyroid nodules. Gland Surg 10:2734–2744PubMedPubMedCentral Zhou Y, Chen H, Qiang J, Wang D (2021) Systematic review and meta-analysis of ultrasonic elastography in the diagnosis of benign and malignant thyroid nodules. Gland Surg 10:2734–2744PubMedPubMedCentral
11.
Zurück zum Zitat Li W, Sun Y, Xu H, Shang W, Dong A (2022) Systematic review and meta-analysis of American College of Radiology TI-RADS inter-reader reliability for risk stratification of thyroid nodules. Front Oncol 12:840516PubMedPubMedCentral Li W, Sun Y, Xu H, Shang W, Dong A (2022) Systematic review and meta-analysis of American College of Radiology TI-RADS inter-reader reliability for risk stratification of thyroid nodules. Front Oncol 12:840516PubMedPubMedCentral
12.
Zurück zum Zitat Nguyen DT, Kang JK, Pham TD, Batchuluun G, Park KR (2020) Ultrasound image-based diagnosis of malignant thyroid nodule using artificial intelligence. Sensors (Basel) 20:1822ADSPubMed Nguyen DT, Kang JK, Pham TD, Batchuluun G, Park KR (2020) Ultrasound image-based diagnosis of malignant thyroid nodule using artificial intelligence. Sensors (Basel) 20:1822ADSPubMed
13.
Zurück zum Zitat Modi L, Sun W, Shafizadeh N et al (2020) Does a higher American College of Radiology Thyroid Imaging Reporting and Data System (ACR TI-RADS) score forecast an increased risk of malignancy? A correlation study of ACR TI-RADS with FNA cytology in the evaluation of thyroid nodules. Cancer Cytopathol 128:470–481PubMed Modi L, Sun W, Shafizadeh N et al (2020) Does a higher American College of Radiology Thyroid Imaging Reporting and Data System (ACR TI-RADS) score forecast an increased risk of malignancy? A correlation study of ACR TI-RADS with FNA cytology in the evaluation of thyroid nodules. Cancer Cytopathol 128:470–481PubMed
14.
Zurück zum Zitat Wang J, Jiang J, Zhang D et al (2022) An integrated AI model to improve diagnostic accuracy of ultrasound and output known risk features in suspicious thyroid nodules. Eur Radiol 32:2120–2129PubMed Wang J, Jiang J, Zhang D et al (2022) An integrated AI model to improve diagnostic accuracy of ultrasound and output known risk features in suspicious thyroid nodules. Eur Radiol 32:2120–2129PubMed
15.
Zurück zum Zitat Hoang JK, Middleton WD, Farjat AE et al (2018) Reduction in thyroid nodule biopsies and improved accuracy with American College of Radiology Thyroid Imaging Reporting and Data System. Radiology 287:185–193PubMed Hoang JK, Middleton WD, Farjat AE et al (2018) Reduction in thyroid nodule biopsies and improved accuracy with American College of Radiology Thyroid Imaging Reporting and Data System. Radiology 287:185–193PubMed
16.
Zurück zum Zitat Sharifi Y, Shafiei S, Tabesh H et al (2022) Observation variation in ultrasonography assessment of thyroid nodules. Asia Ocean J Nucl Med Biol 10:28–35PubMedPubMedCentral Sharifi Y, Shafiei S, Tabesh H et al (2022) Observation variation in ultrasonography assessment of thyroid nodules. Asia Ocean J Nucl Med Biol 10:28–35PubMedPubMedCentral
17.
Zurück zum Zitat Russ G, Bonnema SJ, Erdogan MF, Durante C, Ngu R, Leenhardt L (2017) European Thyroid Association guidelines for ultrasound malignancy risk stratification of thyroid nodules in adults: the EU-TIRADS. Eur Thyroid J 6:225–237PubMedPubMedCentral Russ G, Bonnema SJ, Erdogan MF, Durante C, Ngu R, Leenhardt L (2017) European Thyroid Association guidelines for ultrasound malignancy risk stratification of thyroid nodules in adults: the EU-TIRADS. Eur Thyroid J 6:225–237PubMedPubMedCentral
18.
Zurück zum Zitat Kwak JY, Han KH, Yoon JH et al (2011) Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology 260:892–899PubMed Kwak JY, Han KH, Yoon JH et al (2011) Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology 260:892–899PubMed
19.
Zurück zum Zitat Li W, Zhu Q, Jiang Y et al (2017) Partially cystic thyroid nodules in ultrasound-guided fine needle aspiration: prevalence of thyroid carcinoma and ultrasound features. Medicine (Baltimore) 96:e8689PubMed Li W, Zhu Q, Jiang Y et al (2017) Partially cystic thyroid nodules in ultrasound-guided fine needle aspiration: prevalence of thyroid carcinoma and ultrasound features. Medicine (Baltimore) 96:e8689PubMed
20.
Zurück zum Zitat Fang F, Gong Y, Liao L et al (2021) Value of contrast-enhanced ultrasound in partially cystic papillary thyroid carcinomas. Front Endocrinol (Lausanne) 12:783670PubMed Fang F, Gong Y, Liao L et al (2021) Value of contrast-enhanced ultrasound in partially cystic papillary thyroid carcinomas. Front Endocrinol (Lausanne) 12:783670PubMed
21.
Zurück zum Zitat Brito JP, Gionfriddo MR, Al Nofal A et al (2014) The accuracy of thyroid nodule ultrasound to predict thyroid cancer: systematic review and meta-analysis. J Clin Endocrinol Metab 99:1253–1263PubMed Brito JP, Gionfriddo MR, Al Nofal A et al (2014) The accuracy of thyroid nodule ultrasound to predict thyroid cancer: systematic review and meta-analysis. J Clin Endocrinol Metab 99:1253–1263PubMed
22.
Zurück zum Zitat Remonti LR, Kramer CK, Leitão CB, Pinto LC, Gross JL (2015) Thyroid ultrasound features and risk of carcinoma: a systematic review and meta-analysis of observational studies. Thyroid 25:538–550PubMedPubMedCentral Remonti LR, Kramer CK, Leitão CB, Pinto LC, Gross JL (2015) Thyroid ultrasound features and risk of carcinoma: a systematic review and meta-analysis of observational studies. Thyroid 25:538–550PubMedPubMedCentral
23.
Zurück zum Zitat Hoang JK, Middleton WD, Tessler FN (2021) Update on ACR TI-RADS: successes, challenges, and future directions, from the AJR Special Series on Radiology Reporting and Data Systems. AJR Am J Roentgenol 216:570–578PubMed Hoang JK, Middleton WD, Tessler FN (2021) Update on ACR TI-RADS: successes, challenges, and future directions, from the AJR Special Series on Radiology Reporting and Data Systems. AJR Am J Roentgenol 216:570–578PubMed
24.
Zurück zum Zitat Peng Y, Zhou W, Zhan WW, Xu SY (2017) Ultrasonographic assessment of differential diagnosis between degenerating cystic thyroid nodules and papillary thyroid microcarcinomas. World J Surg 41:2538–2544PubMed Peng Y, Zhou W, Zhan WW, Xu SY (2017) Ultrasonographic assessment of differential diagnosis between degenerating cystic thyroid nodules and papillary thyroid microcarcinomas. World J Surg 41:2538–2544PubMed
25.
Zurück zum Zitat Peng Q, Niu C, Zhang Q, Zhang M, Chen S, Peng Q (2019) Mummified thyroid nodules: conventional and contrast-enhanced ultrasound features. J Ultrasound Med 38:441–452PubMed Peng Q, Niu C, Zhang Q, Zhang M, Chen S, Peng Q (2019) Mummified thyroid nodules: conventional and contrast-enhanced ultrasound features. J Ultrasound Med 38:441–452PubMed
26.
Zurück zum Zitat Chen S, Tang K, Gong Y et al (2022) Value of contrast-enhanced ultrasound in mummified thyroid nodules. Front Endocrinol 13:850698 Chen S, Tang K, Gong Y et al (2022) Value of contrast-enhanced ultrasound in mummified thyroid nodules. Front Endocrinol 13:850698
27.
Zurück zum Zitat Ruan J, Xu X, Cai Y et al (2022) A practical CEUS thyroid reporting system for thyroid nodules. Radiology 305:149–159PubMed Ruan J, Xu X, Cai Y et al (2022) A practical CEUS thyroid reporting system for thyroid nodules. Radiology 305:149–159PubMed
28.
Zurück zum Zitat Wu GG, Lv WZ, Yin R et al (2021) Deep learning based on ACR TI-RADS can improve the differential diagnosis of thyroid nodules. Front Oncol 11:575166PubMedPubMedCentral Wu GG, Lv WZ, Yin R et al (2021) Deep learning based on ACR TI-RADS can improve the differential diagnosis of thyroid nodules. Front Oncol 11:575166PubMedPubMedCentral
29.
Zurück zum Zitat Zhu YC, Jin PF, Bao J, Jiang Q, Wang X (2021) Thyroid ultrasound image classification using a convolutional neural network. Ann Transl Med 9:1526PubMedPubMedCentral Zhu YC, Jin PF, Bao J, Jiang Q, Wang X (2021) Thyroid ultrasound image classification using a convolutional neural network. Ann Transl Med 9:1526PubMedPubMedCentral
30.
Zurück zum Zitat Chen Y, Gao Z, He Y et al (2022) An artificial intelligence model based on ACR TI-RADS characteristics for US diagnosis of thyroid nodules. Radiology 303:613–619PubMed Chen Y, Gao Z, He Y et al (2022) An artificial intelligence model based on ACR TI-RADS characteristics for US diagnosis of thyroid nodules. Radiology 303:613–619PubMed
31.
Zurück zum Zitat Yao J-C, Wang T, Hou G-H et al (2021) AI detection of mild COVID-19 pneumonia from chest CT scans. Eur Radiol 31:7192–7201PubMedPubMedCentral Yao J-C, Wang T, Hou G-H et al (2021) AI detection of mild COVID-19 pneumonia from chest CT scans. Eur Radiol 31:7192–7201PubMedPubMedCentral
32.
Zurück zum Zitat Wang Y, Guan Q, Lao I et al (2019) Using deep convolutional neural networks for multi-classification of thyroid tumor by histopathology: a large-scale pilot study. Ann Transl Med 7:468PubMedPubMedCentral Wang Y, Guan Q, Lao I et al (2019) Using deep convolutional neural networks for multi-classification of thyroid tumor by histopathology: a large-scale pilot study. Ann Transl Med 7:468PubMedPubMedCentral
33.
Zurück zum Zitat Yu J, Deng Y, Liu T et al (2020) Lymph node metastasis prediction of papillary thyroid carcinoma based on transfer learning radiomics. Nat Commun 11:4807ADSPubMedPubMedCentral Yu J, Deng Y, Liu T et al (2020) Lymph node metastasis prediction of papillary thyroid carcinoma based on transfer learning radiomics. Nat Commun 11:4807ADSPubMedPubMedCentral
34.
Zurück zum Zitat Zhao CK, Ren TT, Yin YF et al (2021) A comparative analysis of two machine learning-based diagnostic patterns with thyroid imaging reporting and data system for thyroid nodules: diagnostic performance and unnecessary biopsy rate. Thyroid 31:470–481PubMed Zhao CK, Ren TT, Yin YF et al (2021) A comparative analysis of two machine learning-based diagnostic patterns with thyroid imaging reporting and data system for thyroid nodules: diagnostic performance and unnecessary biopsy rate. Thyroid 31:470–481PubMed
35.
Zurück zum Zitat Tessler FN, Middleton WD, Grant EG et al (2017) ACR Thyroid Imaging, Reporting and Data System (TI-RADS): white paper of the ACR TI-RADS Committee. J Am Coll Radiol 14:587–595PubMed Tessler FN, Middleton WD, Grant EG et al (2017) ACR Thyroid Imaging, Reporting and Data System (TI-RADS): white paper of the ACR TI-RADS Committee. J Am Coll Radiol 14:587–595PubMed
36.
Zurück zum Zitat Yunus M, Ahmed Z (2010) Significance of ultrasound features in predicting malignant solid thyroid nodules: need for fine-needle aspiration. J Pak Med Assoc 60:848–853PubMed Yunus M, Ahmed Z (2010) Significance of ultrasound features in predicting malignant solid thyroid nodules: need for fine-needle aspiration. J Pak Med Assoc 60:848–853PubMed
37.
Zurück zum Zitat Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39:1137–1149PubMed Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39:1137–1149PubMed
38.
Zurück zum Zitat Russ G (2016) Risk stratification of thyroid nodules on ultrasonography with the French TI-RADS: description and reflections. Ultrasonography 35:25–38PubMed Russ G (2016) Risk stratification of thyroid nodules on ultrasonography with the French TI-RADS: description and reflections. Ultrasonography 35:25–38PubMed
39.
Zurück zum Zitat Kim J, Gosnell JE, Roman SA (2020) Geographic influences in the global rise of thyroid cancer. Nat Rev Endocrinol 16:17–29PubMed Kim J, Gosnell JE, Roman SA (2020) Geographic influences in the global rise of thyroid cancer. Nat Rev Endocrinol 16:17–29PubMed
40.
Zurück zum Zitat Pitoia F, Miyauchi A (2016) 2015 American Thyroid Association guidelines for thyroid nodules and differentiated thyroid cancer and their implementation in various care settings. Thyroid 26:319–321 Pitoia F, Miyauchi A (2016) 2015 American Thyroid Association guidelines for thyroid nodules and differentiated thyroid cancer and their implementation in various care settings. Thyroid 26:319–321
41.
Zurück zum Zitat Dighe M, Barr R, Bojunga J et al (2017) Thyroid ultrasound: state of the art part 1 - thyroid ultrasound reporting and diffuse thyroid diseases. Med Ultrason 19:79–93PubMed Dighe M, Barr R, Bojunga J et al (2017) Thyroid ultrasound: state of the art part 1 - thyroid ultrasound reporting and diffuse thyroid diseases. Med Ultrason 19:79–93PubMed
42.
Zurück zum Zitat Dietrich CF, Müller T, Bojunga J et al (2018) Statement and recommendations on interventional ultrasound as a thyroid diagnostic and treatment procedure. Ultrasound Med Biol 44:14–36PubMed Dietrich CF, Müller T, Bojunga J et al (2018) Statement and recommendations on interventional ultrasound as a thyroid diagnostic and treatment procedure. Ultrasound Med Biol 44:14–36PubMed
43.
Zurück zum Zitat Trimboli P, Dietrich CF, David E et al (2018) Ultrasound and ultrasound-related techniques in endocrine diseases. Minerva Endocrinol 43:333–340PubMed Trimboli P, Dietrich CF, David E et al (2018) Ultrasound and ultrasound-related techniques in endocrine diseases. Minerva Endocrinol 43:333–340PubMed
44.
Zurück zum Zitat Hoang JK, Middleton WD, Langer JE et al (2021) Comparison of thyroid risk categorization systems and fine-needle aspiration recommendations in a multi-institutional thyroid ultrasound registry. J Am Coll Radiol 18:1605–1613PubMed Hoang JK, Middleton WD, Langer JE et al (2021) Comparison of thyroid risk categorization systems and fine-needle aspiration recommendations in a multi-institutional thyroid ultrasound registry. J Am Coll Radiol 18:1605–1613PubMed
45.
Zurück zum Zitat Qadan L, Ahmed A, Kapila K (2019) Thyroid ultrasound reports: deficiencies and recommendations. Med Princ Pract 28:280–283PubMed Qadan L, Ahmed A, Kapila K (2019) Thyroid ultrasound reports: deficiencies and recommendations. Med Princ Pract 28:280–283PubMed
46.
Zurück zum Zitat Buda M, Wildman-Tobriner B, Hoang JK et al (2019) Management of thyroid nodules seen on US images: deep learning may match performance of radiologists. Radiology 292:695–701PubMed Buda M, Wildman-Tobriner B, Hoang JK et al (2019) Management of thyroid nodules seen on US images: deep learning may match performance of radiologists. Radiology 292:695–701PubMed
47.
Zurück zum Zitat Tuttle RM, Fagin JA, Minkowitz G et al (2017) Natural history and tumor volume kinetics of papillary thyroid cancers during active surveillance. JAMA Otolaryngol Head Neck Surg 143:1015–1020PubMedPubMedCentral Tuttle RM, Fagin JA, Minkowitz G et al (2017) Natural history and tumor volume kinetics of papillary thyroid cancers during active surveillance. JAMA Otolaryngol Head Neck Surg 143:1015–1020PubMedPubMedCentral
48.
Zurück zum Zitat Xia J, Chen H, Li Q et al (2017) Ultrasound-based differentiation of malignant and benign thyroid nodules: an extreme learning machine approach. Comput Methods Programs Biomed 147:37–49PubMed Xia J, Chen H, Li Q et al (2017) Ultrasound-based differentiation of malignant and benign thyroid nodules: an extreme learning machine approach. Comput Methods Programs Biomed 147:37–49PubMed
49.
Zurück zum Zitat Ma J, Wu F, Zhu J, Xu D, Kong D (2017) A pre-trained convolutional neural network based method for thyroid nodule diagnosis. Ultrasonics 73:221–230PubMed Ma J, Wu F, Zhu J, Xu D, Kong D (2017) A pre-trained convolutional neural network based method for thyroid nodule diagnosis. Ultrasonics 73:221–230PubMed
50.
Zurück zum Zitat Tessler FN, Middleton WD, Grant EG (2018) Thyroid Imaging Reporting and Data System (TI-RADS): a user’s guide. Radiology 287:1082PubMed Tessler FN, Middleton WD, Grant EG (2018) Thyroid Imaging Reporting and Data System (TI-RADS): a user’s guide. Radiology 287:1082PubMed
51.
Zurück zum Zitat Gao L, Liu R, Jiang Y et al (2018) Computer-aided system for diagnosing thyroid nodules on ultrasound: a comparison with radiologist-based clinical assessments. Head Neck 40:778–783PubMed Gao L, Liu R, Jiang Y et al (2018) Computer-aided system for diagnosing thyroid nodules on ultrasound: a comparison with radiologist-based clinical assessments. Head Neck 40:778–783PubMed
52.
Zurück zum Zitat Li X, Zhang S, Zhang Q et al (2019) Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study. Lancet Oncol 20:193–201PubMed Li X, Zhang S, Zhang Q et al (2019) Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study. Lancet Oncol 20:193–201PubMed
53.
Zurück zum Zitat Swan KZ, Thomas J, Nielsen VE, Jespersen ML, Bonnema S (2022) External validation of AIBx, an artificial intelligence model for risk stratification, in thyroid nodules. Eur Thyroid J 11:e210129PubMedPubMedCentral Swan KZ, Thomas J, Nielsen VE, Jespersen ML, Bonnema S (2022) External validation of AIBx, an artificial intelligence model for risk stratification, in thyroid nodules. Eur Thyroid J 11:e210129PubMedPubMedCentral
Metadaten
Titel
Deep learning to assist composition classification and thyroid solid nodule diagnosis: a multicenter diagnostic study
verfasst von
Chen Chen
Yitao Jiang
Jincao Yao
Min Lai
Yuanzhen Liu
Xianping Jiang
Di Ou
Bojian Feng
Lingyan Zhou
Jinfeng Xu
Linghu Wu
Yuli Zhou
Wenwen Yue
Fajin Dong
Dong Xu
Publikationsdatum
11.10.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 4/2024
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-023-10269-z

Neu im Fachgebiet Radiologie

Höhere Trefferquoten bei Brustkrebsscreening dank KI?

Künstliche Intelligenz unterstützt bei der Auswertung von Mammografie-Screenings und senkt somit den Arbeitsaufwand für Radiologen. Wie wirken sich diese Technologien auf die Trefferquote und die Falsch-positiv-Rate aus? Das hat jetzt eine Studie aus Schweden untersucht.

KI-gestütztes Mammografiescreening überzeugt im Praxistest

Mit dem Einsatz künstlicher Intelligenz lässt sich die Detektionsrate im Mammografiescreening offenbar deutlich steigern. Mehr unnötige Zusatzuntersuchungen sind laut der Studie aus Deutschland nicht zu befürchten.

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.