Skip to main content
Erschienen in: European Radiology 12/2022

21.06.2022 | Musculoskeletal

Deep learning to detect anterior cruciate ligament tear on knee MRI: multi-continental external validation

verfasst von: Alexia Tran, Louis Lassalle, Pascal Zille, Raphaël Guillin, Etienne Pluot, Chloé Adam, Martin Charachon, Hugues Brat, Maxence Wallaert, Gaspard d’Assignies, Benoît Rizk

Erschienen in: European Radiology | Ausgabe 12/2022

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To develop a deep-learning algorithm for anterior cruciate ligament (ACL) tear detection and to compare its accuracy using two external datasets.

Methods

A database of 19,765 knee MRI scans (17,738 patients) issued from different manufacturers and magnetic fields was used to build a deep learning–based ACL tear detector. Fifteen percent showed partial or complete ACL rupture. Coronal and sagittal fat-suppressed proton density or T2-weighted sequences were used. A Natural Language Processing algorithm was used to automatically label reports associated with each MRI exam. We compared the accuracy of our model on two publicly available external datasets: MRNet, Bien et al, USA (PLoS Med 15:e1002699, 2018); and KneeMRI, Stajduhar et al, Croatia (Comput Methods Prog Biomed 140:151-164, 2017). Receptor operating characteristics (ROC) curves, area under the curve (AUC), sensitivity, specificity, and accuracy were used to evaluate our model.

Results

Our neural networks achieved an AUC value of 0.939 for detection of ACL tears, with a sensitivity of 87% (0.875) and a specificity of 91% (0.908). After retraining our model on Bien dataset and Stajduhar dataset, our algorithm achieved AUC of 0.962 (95% CI 0.930–0.988) and 0.922 (95% CI 0.875, 0.962) respectively. Sensitivity, specificity, and accuracy were respectively 85% (95% CI 75–94%, 0.852), 89% (95% CI 82–97%, 0.894), 0.875 (95% CI 0.817–0.933) for Bien dataset, and 68% (95% CI 54–81%, 0.681), 93% (95% CI 89–97%, 0.934), and 0.870 (95% CI 0.821–0.913) for Stajduhar dataset.

Conclusion

Our algorithm showed high performance in the detection of ACL tears with AUC on two external datasets, demonstrating its generalizability on different manufacturers and populations.

Summary

This study shows the performance of an algorithm for detecting anterior cruciate ligament tears with an external validation on populations from countries and continents different from the study population.

Key Points

• An algorithm for detecting anterior cruciate ligament ruptures was built from a large dataset of nearly 20,000 MRI with AUC values of 0.939, sensitivity of 87%, and specificity of 91%.
• This algorithm was tested on two external populations from different other countries: a dataset from an American population and a dataset from a Croatian population. Performance remains high on these two external validation populations (AUC of 0.962 and 0.922 respectively).
Literatur
1.
2.
Zurück zum Zitat Shea K, Carey J (2015) Management of anterior cruciate ligament injuries. J Am Acad Orthop Surg 23:e1–e5CrossRefPubMed Shea K, Carey J (2015) Management of anterior cruciate ligament injuries. J Am Acad Orthop Surg 23:e1–e5CrossRefPubMed
3.
Zurück zum Zitat Li K, Du J, Huang L, Ni L, Liu T, Yang H (2017) The diagnostic accuracy of magnetic resonance imaging for anterior cruciate ligament injury in comparison to arthroscopy: a meta-analysis. Sci Rep 7:7583CrossRefPubMedPubMedCentral Li K, Du J, Huang L, Ni L, Liu T, Yang H (2017) The diagnostic accuracy of magnetic resonance imaging for anterior cruciate ligament injury in comparison to arthroscopy: a meta-analysis. Sci Rep 7:7583CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Challen J, Tang Y, Hazratwala K, Stuckey S (2007) Accuracy of MRI diagnosis of internal derangement of the knee in a non-specialized tertiary level referral teaching hospital. Australas Radiol 51:426–431CrossRefPubMed Challen J, Tang Y, Hazratwala K, Stuckey S (2007) Accuracy of MRI diagnosis of internal derangement of the knee in a non-specialized tertiary level referral teaching hospital. Australas Radiol 51:426–431CrossRefPubMed
5.
Zurück zum Zitat Singh R, Kalra M, Nitiwarangkul C et al (2018) Deep learning in chest radiography: detection of findings and presence of change. PLoS One 13:e0204155CrossRefPubMedPubMedCentral Singh R, Kalra M, Nitiwarangkul C et al (2018) Deep learning in chest radiography: detection of findings and presence of change. PLoS One 13:e0204155CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Chilamkurthy S, Ghosh R, Tanamala S et al (2018) Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 392:2388–2396 Chilamkurthy S, Ghosh R, Tanamala S et al (2018) Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 392:2388–2396
7.
Zurück zum Zitat Gyftopoulos S, Lin D, Knoll F, Doshi A, Rodrigues T, Recht M (2019) Artificial intelligence in musculoskeletal imaging: current status and future directions. AJR Am J Roentgenol 213:506–513CrossRefPubMedPubMedCentral Gyftopoulos S, Lin D, Knoll F, Doshi A, Rodrigues T, Recht M (2019) Artificial intelligence in musculoskeletal imaging: current status and future directions. AJR Am J Roentgenol 213:506–513CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Bien N, Rajpurkar P, Ball R et al (2018) Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLoS Med 15:e1002699CrossRefPubMedPubMedCentral Bien N, Rajpurkar P, Ball R et al (2018) Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLoS Med 15:e1002699CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Štajduhar I, Mamula M, Miletić D, Ünal G (2017) Semi-automated detection of anterior cruciate ligament injury from MRI. Comput Methods Prog Biomed 140:151–164CrossRef Štajduhar I, Mamula M, Miletić D, Ünal G (2017) Semi-automated detection of anterior cruciate ligament injury from MRI. Comput Methods Prog Biomed 140:151–164CrossRef
10.
Zurück zum Zitat Rizk B, Brat H, Zille P, Guillin R, Pouchy C (2021) Adam C, et al Meniscal lesion detection and characterization in adult knee MRI: A deep learning model approach with external validation. Phys Med 83:64–71CrossRefPubMed Rizk B, Brat H, Zille P, Guillin R, Pouchy C (2021) Adam C, et al Meniscal lesion detection and characterization in adult knee MRI: A deep learning model approach with external validation. Phys Med 83:64–71CrossRefPubMed
13.
Zurück zum Zitat Beaufils P, Hulet C, Dhénain M, Nizard R, Nourissat G, Pujol N (2009) Clinical practice guidelines for the management of meniscal lesions and isolated lesions of the anterior cruciate ligament of the knee in adults. Orthop Traumatol Surg Res 95(6):437–442CrossRefPubMed Beaufils P, Hulet C, Dhénain M, Nizard R, Nourissat G, Pujol N (2009) Clinical practice guidelines for the management of meniscal lesions and isolated lesions of the anterior cruciate ligament of the knee in adults. Orthop Traumatol Surg Res 95(6):437–442CrossRefPubMed
14.
Zurück zum Zitat DiCiccio T, Efron B (1996) Bootstrap confidence intervals. Stat Sci 11:189–228CrossRef DiCiccio T, Efron B (1996) Bootstrap confidence intervals. Stat Sci 11:189–228CrossRef
15.
Zurück zum Zitat Liu F, Guan B, Zhou Z et al (2019) Fully automated diagnosis of anterior cruciate ligament tears on knee MR images by using deep learning. Radiol Artif Intell 1:180091CrossRefPubMedPubMedCentral Liu F, Guan B, Zhou Z et al (2019) Fully automated diagnosis of anterior cruciate ligament tears on knee MR images by using deep learning. Radiol Artif Intell 1:180091CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Germann C, Marbach G, Civardi F et al (2020) Deep convolutional neural network-based diagnosis of anterior cruciate ligament tears: performance comparison of homogenous versus heterogeneous knee MRI cohorts with different pulse sequence protocols and 1.5-T and 3-T magnetic field strengths. Invest Radiol 55:499–506PubMedPubMedCentral Germann C, Marbach G, Civardi F et al (2020) Deep convolutional neural network-based diagnosis of anterior cruciate ligament tears: performance comparison of homogenous versus heterogeneous knee MRI cohorts with different pulse sequence protocols and 1.5-T and 3-T magnetic field strengths. Invest Radiol 55:499–506PubMedPubMedCentral
17.
Zurück zum Zitat Zhang L, Li M, Zhou Y, Lu G, Zhou Q (2020) Deep learning approach for anterior cruciate ligament lesion detection: evaluation of diagnostic performance using arthroscopy as the reference standard. J Magn Reson Imaging 52:1745–1752CrossRefPubMed Zhang L, Li M, Zhou Y, Lu G, Zhou Q (2020) Deep learning approach for anterior cruciate ligament lesion detection: evaluation of diagnostic performance using arthroscopy as the reference standard. J Magn Reson Imaging 52:1745–1752CrossRefPubMed
18.
Zurück zum Zitat Pinto dos Santos D, Brodehl S, Baeßler B et al (2019) Structured report data can be used to develop deep learning algorithms: a proof of concept in ankle radiographs. Insights Imaging 10:93CrossRefPubMedPubMedCentral Pinto dos Santos D, Brodehl S, Baeßler B et al (2019) Structured report data can be used to develop deep learning algorithms: a proof of concept in ankle radiographs. Insights Imaging 10:93CrossRefPubMedPubMedCentral
19.
20.
Zurück zum Zitat Van Dyck P, Vanhoenacker F, Gielen J et al (2010) Three tesla magnetic resonance imaging of the anterior cruciate ligament of the knee: can we differentiate complete from partial tears? Skelet Radiol 40:701–707 Van Dyck P, Vanhoenacker F, Gielen J et al (2010) Three tesla magnetic resonance imaging of the anterior cruciate ligament of the knee: can we differentiate complete from partial tears? Skelet Radiol 40:701–707
21.
Zurück zum Zitat Phelan N, Rowland P, Galvin R, O’Byrne J (2015) A systematic review and meta-analysis of the diagnostic accuracy of MRI for suspected ACL and meniscal tears of the knee. Knee Surg Sports Traumatol Arthrosc 24:1525–1539CrossRefPubMed Phelan N, Rowland P, Galvin R, O’Byrne J (2015) A systematic review and meta-analysis of the diagnostic accuracy of MRI for suspected ACL and meniscal tears of the knee. Knee Surg Sports Traumatol Arthrosc 24:1525–1539CrossRefPubMed
Metadaten
Titel
Deep learning to detect anterior cruciate ligament tear on knee MRI: multi-continental external validation
verfasst von
Alexia Tran
Louis Lassalle
Pascal Zille
Raphaël Guillin
Etienne Pluot
Chloé Adam
Martin Charachon
Hugues Brat
Maxence Wallaert
Gaspard d’Assignies
Benoît Rizk
Publikationsdatum
21.06.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 12/2022
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-022-08923-z

Weitere Artikel der Ausgabe 12/2022

European Radiology 12/2022 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.