Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 1/2020

03.09.2019 | Original Article

Deep regression neural networks for collateral imaging from dynamic susceptibility contrast-enhanced magnetic resonance perfusion in acute ischemic stroke

verfasst von: Minh Nguyen Nhat To, Hyun Jeong Kim, Hong Gee Roh, Yoon-Sik Cho, Jin Tae Kwak

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 1/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Acute ischemic stroke is one of the primary causes of death worldwide. Recent studies have shown that the assessment of collateral status could aid in improving the treatment for patients with acute ischemic stroke. We present a 3D deep regression neural network to automatically generate the collateral images from dynamic susceptibility contrast-enhanced magnetic resonance perfusion (DSC-MRP) in acute ischemic stroke.

Methods

This retrospective study includes 144 subjects with acute ischemic stroke (stroke cases) and 201 subjects without acute ischemic stroke (controls). DSC-MRP images of these subjects were manually inspected for collateral assessment in arterial, capillary, early and late venous, and delay phases. The proposed network was trained on 205 subjects, and the optimal model was chosen using the validation set of 64 subjects. The predictive power of the network was assessed on the test set of 76 subjects using the squared correlation coefficient (R-squared), mean absolute error (MAE), Tanimoto measure (TM), and structural similarity index (SSIM).

Results

The proposed network was able to predict the five phase maps with high accuracy. On average, 0.897 R-squared, 0.581 × 10−1 MAE, 0.946 TM, and 0.846 SSIM were achieved for the five phase maps. No statistically significant difference was, in general, found between controls and stroke cases. The performance of the proposed network was lower in the arterial and venous phases than the other three phases.

Conclusion

The results suggested that the proposed network performs equally well for both control and acute ischemic stroke groups. The proposed network could help automate the assessment of collateral status in an efficient and effective manner and improve the quality and yield of diagnosis of acute ischemic stroke. The follow-up study will entail the clinical evaluation of the collateral images that are generated by the proposed network.
Literatur
1.
Zurück zum Zitat Liebeskind DS, Tomsick TA, Foster LD, Yeatts SD, Carrozzella J, Demchuk AM, Jovin TG, Khatri P, von Kummer R, Sugg RM (2014) Collaterals at angiography and outcomes in the Interventional Management of Stroke (IMS) III trial. Stroke 45(3):759–764CrossRef Liebeskind DS, Tomsick TA, Foster LD, Yeatts SD, Carrozzella J, Demchuk AM, Jovin TG, Khatri P, von Kummer R, Sugg RM (2014) Collaterals at angiography and outcomes in the Interventional Management of Stroke (IMS) III trial. Stroke 45(3):759–764CrossRef
2.
Zurück zum Zitat Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, Roy D, Jovin TG, Willinsky RA, Sapkota BL (2015) Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 372(11):1019–1030CrossRef Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, Roy D, Jovin TG, Willinsky RA, Sapkota BL (2015) Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 372(11):1019–1030CrossRef
3.
Zurück zum Zitat Bang OY, Saver JL, Buck BH, Alger JR, Starkman S, Ovbiagele B, Kim D, Jahan R, Duckwiler GR, Yoon SR (2008) Impact of collateral flow on tissue fate in acute ischaemic stroke. J Neurol Neurosurg Psychiatry 79(6):625–629CrossRef Bang OY, Saver JL, Buck BH, Alger JR, Starkman S, Ovbiagele B, Kim D, Jahan R, Duckwiler GR, Yoon SR (2008) Impact of collateral flow on tissue fate in acute ischaemic stroke. J Neurol Neurosurg Psychiatry 79(6):625–629CrossRef
4.
Zurück zum Zitat Menon BK, d’Esterre CD, Qazi EM, Almekhlafi M, Hahn L, Demchuk AM, Goyal M (2015) Multiphase CT angiography: a new tool for the imaging triage of patients with acute ischemic stroke. Radiology 275(2):510–520CrossRef Menon BK, d’Esterre CD, Qazi EM, Almekhlafi M, Hahn L, Demchuk AM, Goyal M (2015) Multiphase CT angiography: a new tool for the imaging triage of patients with acute ischemic stroke. Radiology 275(2):510–520CrossRef
5.
Zurück zum Zitat Garcia-Tornel A, Carvalho V, Boned S, Flores A, Rodriguez-Luna D, Pagola J, Muchada M, Sanjuan E, Coscojuela P, Juega J, Rodriguez-Villatoro N, Menon B, Goyal M, Ribo M, Tomasello A, Molina CA, Rubiera M (2016) Improving the evaluation of collateral circulation by multiphase computed tomography angiography in acute stroke patients treated with endovascular reperfusion therapies. Interv Neurol 5(3–4):209–217. https://doi.org/10.1159/000448525 CrossRefPubMedPubMedCentral Garcia-Tornel A, Carvalho V, Boned S, Flores A, Rodriguez-Luna D, Pagola J, Muchada M, Sanjuan E, Coscojuela P, Juega J, Rodriguez-Villatoro N, Menon B, Goyal M, Ribo M, Tomasello A, Molina CA, Rubiera M (2016) Improving the evaluation of collateral circulation by multiphase computed tomography angiography in acute stroke patients treated with endovascular reperfusion therapies. Interv Neurol 5(3–4):209–217. https://​doi.​org/​10.​1159/​000448525 CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Kim SJ, Son JP, Ryoo S, Lee MJ, Cha J, Kim KH, Kim GM, Chung CS, Lee KH, Jeon P (2014) A novel magnetic resonance imaging approach to collateral flow imaging in ischemic stroke. Ann Neurol 76(3):356–369CrossRef Kim SJ, Son JP, Ryoo S, Lee MJ, Cha J, Kim KH, Kim GM, Chung CS, Lee KH, Jeon P (2014) A novel magnetic resonance imaging approach to collateral flow imaging in ischemic stroke. Ann Neurol 76(3):356–369CrossRef
7.
Zurück zum Zitat Robson PM, Dai W, Shankaranarayanan A, Rofsky NM, Alsop DC (2010) Time-resolved vessel-selective digital subtraction MR angiography of the cerebral vasculature with arterial spin labeling. Radiology 257(2):507–515CrossRef Robson PM, Dai W, Shankaranarayanan A, Rofsky NM, Alsop DC (2010) Time-resolved vessel-selective digital subtraction MR angiography of the cerebral vasculature with arterial spin labeling. Radiology 257(2):507–515CrossRef
8.
Zurück zum Zitat Menon BK, Smith EE, Modi J, Patel SK, Bhatia R, Watson TWJ, Hill MD, Demchuk AM, Goyal M (2011) Regional leptomeningeal score on CT angiography predicts clinical and imaging outcomes in patients with acute anterior circulation occlusions. Am J Neuroradiol 32(9):1640. https://doi.org/10.3174/ajnr.A2564 CrossRefPubMed Menon BK, Smith EE, Modi J, Patel SK, Bhatia R, Watson TWJ, Hill MD, Demchuk AM, Goyal M (2011) Regional leptomeningeal score on CT angiography predicts clinical and imaging outcomes in patients with acute anterior circulation occlusions. Am J Neuroradiol 32(9):1640. https://​doi.​org/​10.​3174/​ajnr.​A2564 CrossRefPubMed
9.
10.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436CrossRef
11.
Zurück zum Zitat Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRef Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRef
12.
Zurück zum Zitat Lundervold AS, Lundervold A (2018) An overview of deep learning in medical imaging focusing on MRI. arXiv preprint arXiv:181110052 Lundervold AS, Lundervold A (2018) An overview of deep learning in medical imaging focusing on MRI. arXiv preprint arXiv:​181110052
13.
Zurück zum Zitat McBee MP, Awan OA, Colucci AT, Ghobadi CW, Kadom N, Kansagra AP, Tridandapani S, Auffermann WF (2018) Deep learning in radiology. Acad Radiol 25:1472–1480CrossRef McBee MP, Awan OA, Colucci AT, Ghobadi CW, Kadom N, Kansagra AP, Tridandapani S, Auffermann WF (2018) Deep learning in radiology. Acad Radiol 25:1472–1480CrossRef
14.
Zurück zum Zitat Sun C, Guo S, Zhang H, Li J, Chen M, Ma S, Jin L, Liu X, Li X, Qian X (2017) Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs. Artif Intell Med 83:58–66CrossRef Sun C, Guo S, Zhang H, Li J, Chen M, Ma S, Jin L, Liu X, Li X, Qian X (2017) Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs. Artif Intell Med 83:58–66CrossRef
15.
Zurück zum Zitat Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin P-M, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31CrossRef Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin P-M, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31CrossRef
16.
Zurück zum Zitat Vu QD, Kwak JT (2019) A dense multi-path decoder for tissue segmentation in histopathology images. Comput Methods Programs Biomed 173:119–129CrossRef Vu QD, Kwak JT (2019) A dense multi-path decoder for tissue segmentation in histopathology images. Comput Methods Programs Biomed 173:119–129CrossRef
17.
Zurück zum Zitat Dong C, Loy CC, Tang X (2016) Accelerating the super-resolution convolutional neural network. In: European conference on computer vision, 2016. Springer, pp 391–407 Dong C, Loy CC, Tang X (2016) Accelerating the super-resolution convolutional neural network. In: European conference on computer vision, 2016. Springer, pp 391–407
18.
Zurück zum Zitat Ravì D, Szczotka AB, Shakir DI, Pereira SP, Vercauteren T (2018) Effective deep learning training for single-image super-resolution in endomicroscopy exploiting video-registration-based reconstruction. Int J Comput Assist Radiol Surg 13:1–8CrossRef Ravì D, Szczotka AB, Shakir DI, Pereira SP, Vercauteren T (2018) Effective deep learning training for single-image super-resolution in endomicroscopy exploiting video-registration-based reconstruction. Int J Comput Assist Radiol Surg 13:1–8CrossRef
19.
Zurück zum Zitat Garg R, BG VK, Carneiro G, Reid I (2016) Unsupervised cnn for single view depth estimation: geometry to the rescue. In: European conference on computer vision, 2016. Springer, pp 740–756 Garg R, BG VK, Carneiro G, Reid I (2016) Unsupervised cnn for single view depth estimation: geometry to the rescue. In: European conference on computer vision, 2016. Springer, pp 740–756
20.
Zurück zum Zitat Mahmood F, Durr NJ (2018) Deep learning and conditional random fields-based depth estimation and topographical reconstruction from conventional endoscopy. Med Image Anal 48:230–243CrossRef Mahmood F, Durr NJ (2018) Deep learning and conditional random fields-based depth estimation and topographical reconstruction from conventional endoscopy. Med Image Anal 48:230–243CrossRef
21.
Zurück zum Zitat Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J, Greenspan H (2018) GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 321:321–331CrossRef Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J, Greenspan H (2018) GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 321:321–331CrossRef
22.
Zurück zum Zitat Wolterink JM, Dinkla AM, Savenije MH, Seevinck PR, van den Berg CA, Išgum I (2017) Deep MR to CT synthesis using unpaired data. In: International workshop on simulation and synthesis in medical imaging, 2017. Springer, pp 14–23 Wolterink JM, Dinkla AM, Savenije MH, Seevinck PR, van den Berg CA, Išgum I (2017) Deep MR to CT synthesis using unpaired data. In: International workshop on simulation and synthesis in medical imaging, 2017. Springer, pp 14–23
23.
Zurück zum Zitat Hiasa Y, Otake Y, Takao M, Matsuoka T, Takashima K, Carass A, Prince JL, Sugano N, Sato Y (2018) Cross-modality image synthesis from unpaired data using CycleGAN. In: International workshop on simulation and synthesis in medical imaging, 2018. Springer, pp 31–41 Hiasa Y, Otake Y, Takao M, Matsuoka T, Takashima K, Carass A, Prince JL, Sugano N, Sato Y (2018) Cross-modality image synthesis from unpaired data using CycleGAN. In: International workshop on simulation and synthesis in medical imaging, 2018. Springer, pp 31–41
24.
Zurück zum Zitat Lucas C, Kemmling A, Bouteldja N, Aulmann LF, Mamlouk AM, Heinrich MP (2018) Learning to predict ischemic stroke growth on acute CT perfusion data by interpolating low-dimensional shape representations. Front Neurol 9:989CrossRef Lucas C, Kemmling A, Bouteldja N, Aulmann LF, Mamlouk AM, Heinrich MP (2018) Learning to predict ischemic stroke growth on acute CT perfusion data by interpolating low-dimensional shape representations. Front Neurol 9:989CrossRef
26.
Zurück zum Zitat Stier N, Vincent N, Liebeskind D, Scalzo F (2015) Deep learning of tissue fate features in acute ischemic stroke. In: 2015 IEEE international conference on bioinformatics and biomedicine (BIBM), 2015. IEEE, pp 1316–1321 Stier N, Vincent N, Liebeskind D, Scalzo F (2015) Deep learning of tissue fate features in acute ischemic stroke. In: 2015 IEEE international conference on bioinformatics and biomedicine (BIBM), 2015. IEEE, pp 1316–1321
27.
Zurück zum Zitat Pinto JAADS, Mckinley R, Alves V, Wiest R, Silva CA, Reyes M (2018) Stroke lesion outcome prediction based on MRI imaging combined with clinical information. Front Neurol 9:1060CrossRef Pinto JAADS, Mckinley R, Alves V, Wiest R, Silva CA, Reyes M (2018) Stroke lesion outcome prediction based on MRI imaging combined with clinical information. Front Neurol 9:1060CrossRef
29.
Zurück zum Zitat Robben D, Suetens P (2018) Perfusion parameter estimation using neural networks and data augmentation. In: International MICCAI brainlesion workshop, 2018. Springer, pp 439–446 Robben D, Suetens P (2018) Perfusion parameter estimation using neural networks and data augmentation. In: International MICCAI brainlesion workshop, 2018. Springer, pp 439–446
30.
Zurück zum Zitat Hess A, Meier R, Kaesmacher J, Jung S, Scalzo F, Liebeskind D, Wiest R, McKinley R (2018) Synthetic perfusion maps: imaging perfusion deficits in DSC-MRI with deep learning. In: International MICCAI brainlesion workshop, 2018. Springer, pp 447–455 Hess A, Meier R, Kaesmacher J, Jung S, Scalzo F, Liebeskind D, Wiest R, McKinley R (2018) Synthetic perfusion maps: imaging perfusion deficits in DSC-MRI with deep learning. In: International MICCAI brainlesion workshop, 2018. Springer, pp 447–455
31.
Zurück zum Zitat Xiao Y, Alamer A, Fonov V, Lo BW, Tampieri D, Collins DL, Rivaz H, Kersten-Oertel M (2017) Towards automatic collateral circulation score evaluation in ischemic stroke using image decompositions and support vector machines. In: Jorge Cardoso M et al (eds) Molecular imaging, reconstruction and analysis of moving body organs, and stroke imaging and treatment. Springer, pp 158–167 Xiao Y, Alamer A, Fonov V, Lo BW, Tampieri D, Collins DL, Rivaz H, Kersten-Oertel M (2017) Towards automatic collateral circulation score evaluation in ischemic stroke using image decompositions and support vector machines. In: Jorge Cardoso M et al (eds) Molecular imaging, reconstruction and analysis of moving body organs, and stroke imaging and treatment. Springer, pp 158–167
32.
Zurück zum Zitat Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: International conference on learning representations Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: International conference on learning representations
33.
Zurück zum Zitat Srivastava RK, Greff K, Schmidhuber J (2015) Training very deep networks. In: Cortes C et al (eds) Advances in neural information processing systems, pp 2377–2385 Srivastava RK, Greff K, Schmidhuber J (2015) Training very deep networks. In: Cortes C et al (eds) Advances in neural information processing systems, pp 2377–2385
34.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp 770–778
35.
Zurück zum Zitat Huang G, Liu Z, Weinberger KQ, van der Maaten L (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, vol 2, p 3 Huang G, Liu Z, Weinberger KQ, van der Maaten L (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, vol 2, p 3
36.
Zurück zum Zitat Jégou S, Drozdzal M, Vazquez D, Romero A, Bengio Y (2017) The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2017, pp 11–19 Jégou S, Drozdzal M, Vazquez D, Romero A, Bengio Y (2017) The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2017, pp 11–19
37.
Zurück zum Zitat Zhang Y, Tian Y, Kong Y, Zhong B, Fu Y (2018) Residual dense network for image super-resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp 2472–2481 Zhang Y, Tian Y, Kong Y, Zhong B, Fu Y (2018) Residual dense network for image super-resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp 2472–2481
38.
Zurück zum Zitat Li X, Chen H, Qi X, Dou Q, Fu C-W, Heng P-A (2018) H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans Med Imaging 37(12):2663–2674CrossRef Li X, Chen H, Qi X, Dou Q, Fu C-W, Heng P-A (2018) H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans Med Imaging 37(12):2663–2674CrossRef
39.
Zurück zum Zitat Roy AG, Navab N, Wachinger C (2018) Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks. In: Medical image computing and computer assisted intervention—MICCAI 2018. Springer, Cham, pp 421–429 Roy AG, Navab N, Wachinger C (2018) Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks. In: Medical image computing and computer assisted intervention—MICCAI 2018. Springer, Cham, pp 421–429
41.
Zurück zum Zitat Fu Y, Mazur TR, Wu X, Liu S, Chang X, Lu Y, Li HH, Kim H, Roach MC, Henke L (2018) A novel MRI segmentation method using CNN-based correction network for MRI-guided adaptive radiotherapy. Med Phys 45(11):5129–5137CrossRef Fu Y, Mazur TR, Wu X, Liu S, Chang X, Lu Y, Li HH, Kim H, Roach MC, Henke L (2018) A novel MRI segmentation method using CNN-based correction network for MRI-guided adaptive radiotherapy. Med Phys 45(11):5129–5137CrossRef
42.
Zurück zum Zitat Yu L, Yang X, Chen H, Qin J, Heng P-A (2017) Volumetric convnets with mixed residual connections for automated prostate segmentation from 3D MR images. In: AAAI, 2017, pp 66–72 Yu L, Yang X, Chen H, Qin J, Heng P-A (2017) Volumetric convnets with mixed residual connections for automated prostate segmentation from 3D MR images. In: AAAI, 2017, pp 66–72
43.
Zurück zum Zitat Milletari F, Navab N, Ahmadi S-A (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth international conference on 3D vision (3DV). IEEE, pp 565–571 Milletari F, Navab N, Ahmadi S-A (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth international conference on 3D vision (3DV). IEEE, pp 565–571
44.
Zurück zum Zitat Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78CrossRef Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78CrossRef
45.
Zurück zum Zitat Wachinger C, Reuter M, Klein T (2018) DeepNAT: deep convolutional neural network for segmenting neuroanatomy. NeuroImage 170:434–445CrossRef Wachinger C, Reuter M, Klein T (2018) DeepNAT: deep convolutional neural network for segmenting neuroanatomy. NeuroImage 170:434–445CrossRef
46.
Zurück zum Zitat Kleesiek J, Urban G, Hubert A, Schwarz D, Maier-Hein K, Bendszus M, Biller A (2016) Deep MRI brain extraction: a 3D convolutional neural network for skull stripping. NeuroImage 129:460–469CrossRef Kleesiek J, Urban G, Hubert A, Schwarz D, Maier-Hein K, Bendszus M, Biller A (2016) Deep MRI brain extraction: a 3D convolutional neural network for skull stripping. NeuroImage 129:460–469CrossRef
47.
Zurück zum Zitat Swinscow TDV, Campbell MJ (2002) Statistics at square one. BMJ, London Swinscow TDV, Campbell MJ (2002) Statistics at square one. BMJ, London
48.
Zurück zum Zitat Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30(1):79–82CrossRef Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30(1):79–82CrossRef
49.
Zurück zum Zitat Tanimoto TT (1958) Elementary mathematical theory of classification and prediction. IBM Corp., New York Tanimoto TT (1958) Elementary mathematical theory of classification and prediction. IBM Corp., New York
50.
Zurück zum Zitat Theodoridis S, Koutroumbas K (2008) Pattern recognition, 4th edn. Academic Press, Inc, Cambridge Theodoridis S, Koutroumbas K (2008) Pattern recognition, 4th edn. Academic Press, Inc, Cambridge
51.
Zurück zum Zitat Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612CrossRef Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612CrossRef
52.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, 2015. Springer, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, 2015. Springer, pp 234–241
53.
Zurück zum Zitat Xie S, Girshick R, Dollár P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 5987–5995 Xie S, Girshick R, Dollár P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 5987–5995
54.
Zurück zum Zitat Kinga D, Adam JB (2015) A method for stochastic optimization. In: International conference on learning representations (ICLR) Kinga D, Adam JB (2015) A method for stochastic optimization. In: International conference on learning representations (ICLR)
55.
Zurück zum Zitat Wu Y, He K (2018) Group normalization. In: Proceedings of the European conference on computer vision (ECCV), 2018, pp 3–19CrossRef Wu Y, He K (2018) Group normalization. In: Proceedings of the European conference on computer vision (ECCV), 2018, pp 3–19CrossRef
56.
Zurück zum Zitat Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Paper presented at the proceedings of the 32nd international conference on international conference on machine learning—vol 37, Lille, France Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Paper presented at the proceedings of the 32nd international conference on international conference on machine learning—vol 37, Lille, France
Metadaten
Titel
Deep regression neural networks for collateral imaging from dynamic susceptibility contrast-enhanced magnetic resonance perfusion in acute ischemic stroke
verfasst von
Minh Nguyen Nhat To
Hyun Jeong Kim
Hong Gee Roh
Yoon-Sik Cho
Jin Tae Kwak
Publikationsdatum
03.09.2019
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 1/2020
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-019-02060-7

Weitere Artikel der Ausgabe 1/2020

International Journal of Computer Assisted Radiology and Surgery 1/2020 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.