Skip to main content
Erschienen in: Brain Structure and Function 3/2016

08.01.2015 | Original Article

Deficits in task-set maintenance and execution networks in Parkinson’s disease

verfasst von: Sule Tinaz, Peter Lauro, Mark Hallett, Silvina G. Horovitz

Erschienen in: Brain Structure and Function | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

Patients with Parkinson’s disease have difficulties with self-initiating a task and maintaining a steady task performance. We hypothesized that these difficulties relate to reorganization in the sensorimotor execution, cingulo-opercular task-set maintenance, and frontoparietal adaptive control networks. We tested this hypothesis using graph theory-based network analysis of a composite network including a total of 86 nodes, derived from the three networks of interest. Resting-state functional magnetic resonance images were collected from 30 patients with Parkinson’s disease (age 42–75 years, 11 females; Hoehn and Yahr score 2–3, average 2.4 ± 0.4) in their off-medication state and 30 matched control subjects (age 44–75 years, 10 females). For each node, we calculated strength as a general measure of connectivity, global efficiency and betweenness centrality as measures of functional integration, and clustering coefficient and local efficiency as measures of functional segregation. We found reduced node strength, clustering, and local efficiency in sensorimotor and posterior temporal nodes. There was also reduced node strength and betweenness centrality in the dorsal anterior insula and temporoparietal junction nodes of the cingulo-opercular network. These nodes are involved in integrating multimodal information, specifically related to self-awareness, sense of agency, and ultimately to intact perception of self-in-action. Moreover, we observed significant correlations between global disease severity and averaged graph metrics of the whole network. In addition to the well-known task-related frontostriatal mechanisms, we propose that the resting-state reorganization in the composite network can contribute to problems with self-initiation and task-set maintenance in Parkinson’s disease.
Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Bullmore and Sporns (2009); Rubinov and Sporns (2010).
 
Literatur
Zurück zum Zitat Beatty WW, Monson N (1990) Problem solving in Parkinson’s disease: comparison of performance on the Wisconsin and California Card Sorting Tests. J Geriatr Psychiatry Neurol 3(3):163–171CrossRefPubMed Beatty WW, Monson N (1990) Problem solving in Parkinson’s disease: comparison of performance on the Wisconsin and California Card Sorting Tests. J Geriatr Psychiatry Neurol 3(3):163–171CrossRefPubMed
Zurück zum Zitat Berardelli A, Rothwell JC, Thompson PD, Hallett M (2001) Pathophysiology of bradykinesia in Parkinson’s disease. Brain 2124(Pt 11):2131–2146CrossRef Berardelli A, Rothwell JC, Thompson PD, Hallett M (2001) Pathophysiology of bradykinesia in Parkinson’s disease. Brain 2124(Pt 11):2131–2146CrossRef
Zurück zum Zitat Blanke O, Mohr C, Michel CM, Pascual-Leone A, Brugger P, Seeck M, Landis T, Thut G (2005) Linking out-of-body experience and self processing to mental own-body imagery at the temporoparietal junction. J Neurosci 25(3):550–557CrossRefPubMed Blanke O, Mohr C, Michel CM, Pascual-Leone A, Brugger P, Seeck M, Landis T, Thut G (2005) Linking out-of-body experience and self processing to mental own-body imagery at the temporoparietal junction. J Neurosci 25(3):550–557CrossRefPubMed
Zurück zum Zitat Braak H, Bohl JR, Müller CM, Rüb U, de Vos RA, Del Tredici K (2006) Stanley Fahn Lecture 2005: the staging procedure for the inclusion body pathology associated with sporadic Parkinson’s disease reconsidered. Mov Disord 221(12):2042–2051CrossRef Braak H, Bohl JR, Müller CM, Rüb U, de Vos RA, Del Tredici K (2006) Stanley Fahn Lecture 2005: the staging procedure for the inclusion body pathology associated with sporadic Parkinson’s disease reconsidered. Mov Disord 221(12):2042–2051CrossRef
Zurück zum Zitat Brown P (2000) Cortical drives to human muscle: the piper and related rhythms. Prog Neurobiol 60(1):97–108CrossRefPubMed Brown P (2000) Cortical drives to human muscle: the piper and related rhythms. Prog Neurobiol 60(1):97–108CrossRefPubMed
Zurück zum Zitat Catalan MJ, Ishii K, Honda M, Samii A, Hallett M (1999) A PET study of sequential finger movements of varying length in patients with Parkinson’s disease. Brain 122(Pt 3):483–495CrossRefPubMed Catalan MJ, Ishii K, Honda M, Samii A, Hallett M (1999) A PET study of sequential finger movements of varying length in patients with Parkinson’s disease. Brain 122(Pt 3):483–495CrossRefPubMed
Zurück zum Zitat Christopher L, Marras C, Duff-Canning S, Koshimori Y, Chen R, Boileau I, Segura B, Monchi O, Lang AE, Rusjan P, Houle S, Strafella AP (2014) Combined insular and striatal dopamine dysfunction are associated with executive deficits in Parkinson’s disease with mild cognitive impairment. Brain 137(Pt 2):565–575. doi:10.1093/brain/awt337 CrossRefPubMedPubMedCentral Christopher L, Marras C, Duff-Canning S, Koshimori Y, Chen R, Boileau I, Segura B, Monchi O, Lang AE, Rusjan P, Houle S, Strafella AP (2014) Combined insular and striatal dopamine dysfunction are associated with executive deficits in Parkinson’s disease with mild cognitive impairment. Brain 137(Pt 2):565–575. doi:10.​1093/​brain/​awt337 CrossRefPubMedPubMedCentral
Zurück zum Zitat Cools R, Barker RA, Sahakian BJ, Robbins TW (2001) Mechanisms of cognitive set flexibility in Parkinson’s disease. Brain 124(Pt 12):2503–2512CrossRefPubMed Cools R, Barker RA, Sahakian BJ, Robbins TW (2001) Mechanisms of cognitive set flexibility in Parkinson’s disease. Brain 124(Pt 12):2503–2512CrossRefPubMed
Zurück zum Zitat Cools R, Stefanova E, Barker RA, Robbins TW, Owen AM (2002) Dopaminergic modulation of high-level cognition in Parkinson’s disease: the role of the prefrontal cortex revealed by PET. Brain 125(Pt 3):584–594CrossRefPubMed Cools R, Stefanova E, Barker RA, Robbins TW, Owen AM (2002) Dopaminergic modulation of high-level cognition in Parkinson’s disease: the role of the prefrontal cortex revealed by PET. Brain 125(Pt 3):584–594CrossRefPubMed
Zurück zum Zitat Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173CrossRefPubMed Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173CrossRefPubMed
Zurück zum Zitat Dagher A, Owen AM, Boecker H, Brooks DJ (2001) The role of the striatum and hippocampus in planning: a PET activation study in Parkinson’s disease. Brain 124(Pt 5):1020–1032CrossRefPubMed Dagher A, Owen AM, Boecker H, Brooks DJ (2001) The role of the striatum and hippocampus in planning: a PET activation study in Parkinson’s disease. Brain 124(Pt 5):1020–1032CrossRefPubMed
Zurück zum Zitat Davidsdottir S, Cronin-Golomb A, Lee A (2005) Visual and spatial symptoms in Parkinson’s disease. Vision Res 45(10):1285–1296CrossRefPubMed Davidsdottir S, Cronin-Golomb A, Lee A (2005) Visual and spatial symptoms in Parkinson’s disease. Vision Res 45(10):1285–1296CrossRefPubMed
Zurück zum Zitat Dosenbach NU, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, Burgund ED, Grimes AL, Schlaggar BL, Petersen SE (2006) A core system for the implementation of task sets. Neuron 50(5):799–812CrossRefPubMedPubMedCentral Dosenbach NU, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, Burgund ED, Grimes AL, Schlaggar BL, Petersen SE (2006) A core system for the implementation of task sets. Neuron 50(5):799–812CrossRefPubMedPubMedCentral
Zurück zum Zitat Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, Fox MD, Snyder AZ, Vincent JL, Raichle ME, Schlaggar BL, Petersen SE (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA 104(26):11073–11078CrossRefPubMedPubMedCentral Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, Fox MD, Snyder AZ, Vincent JL, Raichle ME, Schlaggar BL, Petersen SE (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA 104(26):11073–11078CrossRefPubMedPubMedCentral
Zurück zum Zitat Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR Jr, Barch DM, Petersen SE, Schlaggar BL (2010) Prediction of individual brain maturity using fMRI. Science 329(5997):1358–1361. doi:10.1126/science.1194144 CrossRefPubMedPubMedCentral Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR Jr, Barch DM, Petersen SE, Schlaggar BL (2010) Prediction of individual brain maturity using fMRI. Science 329(5997):1358–1361. doi:10.​1126/​science.​1194144 CrossRefPubMedPubMedCentral
Zurück zum Zitat Fahn S (1995) The freezing phenomenon in parkinsonism. Adv Neurol 67:53–63PubMed Fahn S (1995) The freezing phenomenon in parkinsonism. Adv Neurol 67:53–63PubMed
Zurück zum Zitat Fahn S, Elton R (1987) Unified Parkinson’s disease rating scale. In: Fahn S, Marsden CD, Calne D, Goldstein M (eds) Recent developments in Parkinson’s disease. MacMillan Health Care Information, New Jersey, pp 153–163 Fahn S, Elton R (1987) Unified Parkinson’s disease rating scale. In: Fahn S, Marsden CD, Calne D, Goldstein M (eds) Recent developments in Parkinson’s disease. MacMillan Health Care Information, New Jersey, pp 153–163
Zurück zum Zitat Fair DA, Nigg JT, Iyer S, Bathula D, Mills KL, Dosenbach NU, Schlaggar BL, Mennes M, Gutman D, Bangaru S, Buitelaar JK, Dickstein DP, Di Martino A, Kennedy DN, Kelly C, Luna B, Schweitzer JB, Velanova K, Wang YF, Mostofsky S, Castellanos FX, Milham MP (2013) Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data. Front Syst Neurosci 6:80. doi:10.3389/fnsys.2012.00080 CrossRefPubMedPubMedCentral Fair DA, Nigg JT, Iyer S, Bathula D, Mills KL, Dosenbach NU, Schlaggar BL, Mennes M, Gutman D, Bangaru S, Buitelaar JK, Dickstein DP, Di Martino A, Kennedy DN, Kelly C, Luna B, Schweitzer JB, Velanova K, Wang YF, Mostofsky S, Castellanos FX, Milham MP (2013) Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data. Front Syst Neurosci 6:80. doi:10.​3389/​fnsys.​2012.​00080 CrossRefPubMedPubMedCentral
Zurück zum Zitat Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198CrossRefPubMed Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198CrossRefPubMed
Zurück zum Zitat Giese MA, Poggio T (2003) Neural mechanisms for the recognition of biological movements. Nat Rev Neurosci 4(3):179–192CrossRefPubMed Giese MA, Poggio T (2003) Neural mechanisms for the recognition of biological movements. Nat Rev Neurosci 4(3):179–192CrossRefPubMed
Zurück zum Zitat Hallett M (2003) Parkinson revisited: pathophysiology of motor signs. Adv Neurol 91:19–28PubMed Hallett M (2003) Parkinson revisited: pathophysiology of motor signs. Adv Neurol 91:19–28PubMed
Zurück zum Zitat Haslinger B, Erhard P, Kämpfe N, Boecker H, Rummeny E, Schwaiger M, Conrad B, Ceballos-Baumann AO (2001) Event-related functional magnetic resonance imaging in Parkinson’s disease before and after levodopa. Brain 124(Pt 3):558–570CrossRefPubMed Haslinger B, Erhard P, Kämpfe N, Boecker H, Rummeny E, Schwaiger M, Conrad B, Ceballos-Baumann AO (2001) Event-related functional magnetic resonance imaging in Parkinson’s disease before and after levodopa. Brain 124(Pt 3):558–570CrossRefPubMed
Zurück zum Zitat Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17(5):427–442CrossRefPubMed Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17(5):427–442CrossRefPubMed
Zurück zum Zitat Hoffstaedter F, Grefkes C, Caspers S, Roski C, Palomero-Gallagher N, Laird AR, Fox PT, Eickhoff SB (2014) The role of anterior midcingulate cortex in cognitive motor control: evidence from functional connectivity analyses. Hum Brain Mapp 35(6):2741–2753. doi:10.1002/hbm.22363 CrossRefPubMed Hoffstaedter F, Grefkes C, Caspers S, Roski C, Palomero-Gallagher N, Laird AR, Fox PT, Eickhoff SB (2014) The role of anterior midcingulate cortex in cognitive motor control: evidence from functional connectivity analyses. Hum Brain Mapp 35(6):2741–2753. doi:10.​1002/​hbm.​22363 CrossRefPubMed
Zurück zum Zitat Hughes AJ, Ben-Shlomo Y, Daniel SE, Lees AJ (2001) What features improve the accuracy of clinical diagnosis in Parkinson’s disease: a clinicopathologic study. 1992. Neurology 57(10 Suppl 3):S34–S38PubMed Hughes AJ, Ben-Shlomo Y, Daniel SE, Lees AJ (2001) What features improve the accuracy of clinical diagnosis in Parkinson’s disease: a clinicopathologic study. 1992. Neurology 57(10 Suppl 3):S34–S38PubMed
Zurück zum Zitat Iansek R, Huxham F, McGinley J (2006) The sequence effect and gait festination in Parkinson disease: contributors to freezing of gait? Mov Disord 21(9):1419–1424CrossRefPubMed Iansek R, Huxham F, McGinley J (2006) The sequence effect and gait festination in Parkinson disease: contributors to freezing of gait? Mov Disord 21(9):1419–1424CrossRefPubMed
Zurück zum Zitat Jastorff J, Clavagnier S, Gergely G, Orban GA (2011) Neural mechanisms of understanding rational actions: middle temporal gyrus activation by contextual violation. Cereb Cortex 21(2):318–329. doi:10.1093/cercor/bhq098 CrossRefPubMed Jastorff J, Clavagnier S, Gergely G, Orban GA (2011) Neural mechanisms of understanding rational actions: middle temporal gyrus activation by contextual violation. Cereb Cortex 21(2):318–329. doi:10.​1093/​cercor/​bhq098 CrossRefPubMed
Zurück zum Zitat Jo HJ, Gotts SJ, Reynolds RC, Bandettini PA, Martin A, Cox RW, Saad ZS (2013) Effective preprocessing procedures virtually eliminate distance-dependent motion artifacts in resting state FMRI. J Appl Math. doi:10.1155/2013/935154 PubMedPubMedCentral Jo HJ, Gotts SJ, Reynolds RC, Bandettini PA, Martin A, Cox RW, Saad ZS (2013) Effective preprocessing procedures virtually eliminate distance-dependent motion artifacts in resting state FMRI. J Appl Math. doi:10.​1155/​2013/​935154 PubMedPubMedCentral
Zurück zum Zitat Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 318(14):876–880CrossRefPubMed Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 318(14):876–880CrossRefPubMed
Zurück zum Zitat Lewis SJ, Slabosz A, Robbins TW, Barker RA, Owen AM (2005) Dopaminergic basis for deficits in working memory but not attentional set-shifting in Parkinson’s disease. Neuropsychologia 43(6):823–832CrossRefPubMed Lewis SJ, Slabosz A, Robbins TW, Barker RA, Owen AM (2005) Dopaminergic basis for deficits in working memory but not attentional set-shifting in Parkinson’s disease. Neuropsychologia 43(6):823–832CrossRefPubMed
Zurück zum Zitat Monchi O, Petrides M, Doyon J, Postuma RB, Worsley K, Dagher A (2004) Neural bases of set-shifting deficits in Parkinson’s disease. J Neurosci 24(3):702–710CrossRefPubMed Monchi O, Petrides M, Doyon J, Postuma RB, Worsley K, Dagher A (2004) Neural bases of set-shifting deficits in Parkinson’s disease. J Neurosci 24(3):702–710CrossRefPubMed
Zurück zum Zitat Nakamura T, Ghilardi MF, Mentis M, Dhawan V, Fukuda M, Hacking A, Moeller JR, Ghez C, Eidelberg D (2001) Functional networks in motor sequence learning: abnormal topographies in Parkinson’s disease. Hum Brain Mapp 12(1):42–60CrossRefPubMed Nakamura T, Ghilardi MF, Mentis M, Dhawan V, Fukuda M, Hacking A, Moeller JR, Ghez C, Eidelberg D (2001) Functional networks in motor sequence learning: abnormal topographies in Parkinson’s disease. Hum Brain Mapp 12(1):42–60CrossRefPubMed
Zurück zum Zitat Owen AM, Roberts AC, Hodges JR, Summers BA, Polkey CE, Robbins TW (1993) Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson’s disease. Brain 116(Pt 5):1159–1175CrossRefPubMed Owen AM, Roberts AC, Hodges JR, Summers BA, Polkey CE, Robbins TW (1993) Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson’s disease. Brain 116(Pt 5):1159–1175CrossRefPubMed
Zurück zum Zitat Owen AM, Doyon J, Dagher A, Sadikot A, Evans AC (1998) Abnormal basal ganglia outflow in Parkinson’s disease identified with PET. Implications for higher cortical functions. Brain 121(Pt 5):949–965CrossRefPubMed Owen AM, Doyon J, Dagher A, Sadikot A, Evans AC (1998) Abnormal basal ganglia outflow in Parkinson’s disease identified with PET. Implications for higher cortical functions. Brain 121(Pt 5):949–965CrossRefPubMed
Zurück zum Zitat Pyles JA, Garcia JO, Hoffman DD, Grossman ED (2007) Visual perception and neural correlates of novel ‘biological motion’. Vision Res 47(21):2786–2797CrossRefPubMed Pyles JA, Garcia JO, Hoffman DD, Grossman ED (2007) Visual perception and neural correlates of novel ‘biological motion’. Vision Res 47(21):2786–2797CrossRefPubMed
Zurück zum Zitat Rowe J, Stephan KE, Friston K, Frackowiak R, Lees A, Passingham R (2002) Attention to action in Parkinson’s disease: impaired effective connectivity among frontal cortical regions. Brain 125(Pt 2):276–289CrossRefPubMed Rowe J, Stephan KE, Friston K, Frackowiak R, Lees A, Passingham R (2002) Attention to action in Parkinson’s disease: impaired effective connectivity among frontal cortical regions. Brain 125(Pt 2):276–289CrossRefPubMed
Zurück zum Zitat Sabatini U, Boulanouar K, Fabre N, Martin F, Carel C, Colonnese C, Bozzao L, Berry I, Montastruc JL, Chollet F, Rascol O (2000) Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain 123(Pt 2):394–403CrossRefPubMed Sabatini U, Boulanouar K, Fabre N, Martin F, Carel C, Colonnese C, Bozzao L, Berry I, Montastruc JL, Chollet F, Rascol O (2000) Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain 123(Pt 2):394–403CrossRefPubMed
Zurück zum Zitat Salenius S, Avikainen S, Kaakkola S, Hari R, Brown P (2002) Defective cortical drive to muscle in Parkinson’s disease and its improvement with levodopa. Brain 125(Pt 3):491–500CrossRefPubMed Salenius S, Avikainen S, Kaakkola S, Hari R, Brown P (2002) Defective cortical drive to muscle in Parkinson’s disease and its improvement with levodopa. Brain 125(Pt 3):491–500CrossRefPubMed
Zurück zum Zitat Samuel M, Ceballos-Baumann AO, Blin J, Uema T, Boecker H, Passingham RE, Brooks DJ (1997) Evidence for lateral premotor and parietal overactivity in Parkinson’s disease during sequential and bimanual movements. A PET study. Brain 120(Pt 6):963–976CrossRefPubMed Samuel M, Ceballos-Baumann AO, Blin J, Uema T, Boecker H, Passingham RE, Brooks DJ (1997) Evidence for lateral premotor and parietal overactivity in Parkinson’s disease during sequential and bimanual movements. A PET study. Brain 120(Pt 6):963–976CrossRefPubMed
Zurück zum Zitat Schultz J, Imamizu H, Kawato M, Frith CD (2004) Activation of the human superior temporal gyrus during observation of goal attribution by intentional objects. J Cogn Neurosci 16(10):1695–1705CrossRefPubMed Schultz J, Imamizu H, Kawato M, Frith CD (2004) Activation of the human superior temporal gyrus during observation of goal attribution by intentional objects. J Cogn Neurosci 16(10):1695–1705CrossRefPubMed
Zurück zum Zitat Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356CrossRefPubMedPubMedCentral Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356CrossRefPubMedPubMedCentral
Zurück zum Zitat Sowden S, Catmur C (2013) The role of the right temporoparietal junction in the control of imitation. Cereb Cortex (Epub ahead of print) PubMed PMID: 24177989 Sowden S, Catmur C (2013) The role of the right temporoparietal junction in the control of imitation. Cereb Cortex (Epub ahead of print) PubMed PMID: 24177989
Zurück zum Zitat Tinaz S, Schendan HE, Stern CE (2008) Fronto-striatal deficit in Parkinson’s disease during semantic event sequencing. Neurobiol Aging 29(3):397–407CrossRefPubMedPubMedCentral Tinaz S, Schendan HE, Stern CE (2008) Fronto-striatal deficit in Parkinson’s disease during semantic event sequencing. Neurobiol Aging 29(3):397–407CrossRefPubMedPubMedCentral
Zurück zum Zitat Vogeley K, Fink GR (2003) Neural correlates of the first-person-perspective. Trends Cogn Sci 7(1):38–42CrossRefPubMed Vogeley K, Fink GR (2003) Neural correlates of the first-person-perspective. Trends Cogn Sci 7(1):38–42CrossRefPubMed
Zurück zum Zitat Wu T, Long X, Wang L, Hallett M, Zang Y, Li K, Chan P (2011b) Functional connectivity of cortical motor areas in the resting state in Parkinson’s disease. Hum Brain Mapp 32(9):1443–1457. doi:10.1002/hbm.21118 CrossRefPubMed Wu T, Long X, Wang L, Hallett M, Zang Y, Li K, Chan P (2011b) Functional connectivity of cortical motor areas in the resting state in Parkinson’s disease. Hum Brain Mapp 32(9):1443–1457. doi:10.​1002/​hbm.​21118 CrossRefPubMed
Zurück zum Zitat Yu H, Sternad D, Corcos DM, Vaillancourt DE (2007) Role of hyperactive cerebellum and motor cortex in Parkinson’s disease. Neuroimage 35(1):222–233CrossRefPubMedPubMedCentral Yu H, Sternad D, Corcos DM, Vaillancourt DE (2007) Role of hyperactive cerebellum and motor cortex in Parkinson’s disease. Neuroimage 35(1):222–233CrossRefPubMedPubMedCentral
Zurück zum Zitat Zalla T, Sirigu A, Pillon B, Dubois B, Grafman J, Agid Y (1998) Deficit in evaluating pre-determined sequences of script events in patients with Parkinson’s disease. Cortex 34(4):621–627CrossRefPubMed Zalla T, Sirigu A, Pillon B, Dubois B, Grafman J, Agid Y (1998) Deficit in evaluating pre-determined sequences of script events in patients with Parkinson’s disease. Cortex 34(4):621–627CrossRefPubMed
Metadaten
Titel
Deficits in task-set maintenance and execution networks in Parkinson’s disease
verfasst von
Sule Tinaz
Peter Lauro
Mark Hallett
Silvina G. Horovitz
Publikationsdatum
08.01.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 3/2016
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-014-0981-8

Weitere Artikel der Ausgabe 3/2016

Brain Structure and Function 3/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.