Skip to main content
Erschienen in: Current Cardiovascular Risk Reports 11/2018

01.11.2018 | Cardiovascular Risk Health Policy (W. Rosamond, Section Editor)

Delivery of Automated External Defibrillators (AED) by Drones: Implications for Emergency Cardiac Care

verfasst von: Jessica K. Zègre-Hemsey, Brittany Bogle, Christopher J. Cunningham, Kyle Snyder, Wayne Rosamond

Erschienen in: Current Cardiovascular Risk Reports | Ausgabe 11/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

Out-of-hospital cardiac arrest (OHCA) remains a significant health problem in the USA and only 8.6% of victims survive with good neurological function, despite advances in emergency cardiac care. The likelihood of OHCA survival decreases by 10% for every minute without resuscitation.

Recent Findings

Automatic external defibrillators (AEDs) have the potential to save lives yet public access defibrillators are underutilized (< 2% of the time) because they are difficult to locate and rarely available in homes or residential areas, where the majority (70%) of OHCA occur. Even when AEDs are within close proximity (within 100 m), they are not used 40% of the time.

Summary

Unmanned aerial vehicles, or drones, have the potential to deliver AEDs to a bystander and augment emergency medical service (EMS) care. We review the use of drones in medicine, what is currently known, and clinical implications for advancing emergency cardiac care.
Literatur
7.
Zurück zum Zitat McCarthy JJ, Carr B, Sasson C, Bobrow BJ, Callaway CW, Neumar RW, et al. Out-of-hospital cardiac arrest resuscitation systems of care: a scientific statement from the American Heart Association. Circulation. 2018;137(21):e645–60.CrossRefPubMed McCarthy JJ, Carr B, Sasson C, Bobrow BJ, Callaway CW, Neumar RW, et al. Out-of-hospital cardiac arrest resuscitation systems of care: a scientific statement from the American Heart Association. Circulation. 2018;137(21):e645–60.CrossRefPubMed
12.
Zurück zum Zitat Portner ME, Pollack ML, Schirk SK, Schlenker MK. Out-of-hospital cardiac arrest locations in a rural community: where should we place AEDs? Prehosp Disaster Med. 2004;19(4):352–5. discussion 5CrossRefPubMed Portner ME, Pollack ML, Schirk SK, Schlenker MK. Out-of-hospital cardiac arrest locations in a rural community: where should we place AEDs? Prehosp Disaster Med. 2004;19(4):352–5. discussion 5CrossRefPubMed
16.
Zurück zum Zitat • Claesson A, Bäckman A, Ringh M, et al. Time to delivery of an automated external defibrillator using a drone for simulated out-of-hospital cardiac arrests vs emergency medical services. JAMA. 2017;317(22):2332–4. https://doi.org/10.1001/jama.2017.3957. The purpose of this pilot study was to compare delivery times of autonomous flying drones equipped with AEDs versus EMS in simulated OHCA. Investigators conducted eighteen flights to test the feasibility of autonomous drones equipped with AEDs and concluded it was feasible to fly drones equipped with AEDs in out-of-sight flights. CrossRefPubMedPubMedCentral • Claesson A, Bäckman A, Ringh M, et al. Time to delivery of an automated external defibrillator using a drone for simulated out-of-hospital cardiac arrests vs emergency medical services. JAMA. 2017;317(22):2332–4. https://​doi.​org/​10.​1001/​jama.​2017.​3957. The purpose of this pilot study was to compare delivery times of autonomous flying drones equipped with AEDs versus EMS in simulated OHCA. Investigators conducted eighteen flights to test the feasibility of autonomous drones equipped with AEDs and concluded it was feasible to fly drones equipped with AEDs in out-of-sight flights. CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat • Bhatt K, Pourmand A, Sikka N. Targeted applications of unmanned aerial vehicles (drones) in telemedicine. Telemed J E Health. 2018; https://doi.org/10.1089/tmj.2017.0289. This comprehensive review identified UAV application in medicine in three categories: prehospital emergency care, expediting laboratory diagnostic testing, and surveillance. Authors concluded that UAVs have the potential to both access and quality of healthcare for patients otherwise restricted due to cost, distance, or infrastructure. • Bhatt K, Pourmand A, Sikka N. Targeted applications of unmanned aerial vehicles (drones) in telemedicine. Telemed J E Health. 2018; https://​doi.​org/​10.​1089/​tmj.​2017.​0289. This comprehensive review identified UAV application in medicine in three categories: prehospital emergency care, expediting laboratory diagnostic testing, and surveillance. Authors concluded that UAVs have the potential to both access and quality of healthcare for patients otherwise restricted due to cost, distance, or infrastructure.
21.
Zurück zum Zitat • Boutilier JJ, Brooks SC, Janmohamed A, Byers A, Buick JE, Zhan C, et al. Optimizing a drone network to deliver automated external defibrillators. Circulation. 2017; https://doi.org/10.1161/circulationaha.116.026318. Investigators describe a hypothestical drone network based on mathematical modeling designed to reduce time to AED arrival. Their primary analysis quantified the drone network size required to deliver an AED in one, two, or three minute faster than historical median 911 times across Toronto regions. CrossRefPubMedPubMedCentral • Boutilier JJ, Brooks SC, Janmohamed A, Byers A, Buick JE, Zhan C, et al. Optimizing a drone network to deliver automated external defibrillators. Circulation. 2017; https://​doi.​org/​10.​1161/​circulationaha.​116.​026318. Investigators describe a hypothestical drone network based on mathematical modeling designed to reduce time to AED arrival. Their primary analysis quantified the drone network size required to deliver an AED in one, two, or three minute faster than historical median 911 times across Toronto regions. CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat • Pulver A, Wei R, Mann C. Locating AED enabled medical drones to enhance cardiac arrest response times. Prehosp Emerg Care. 2016;20(3):378–89. https://doi.org/10.3109/10903127.2015.1115932. Investigators developed a geographical approach using drones equipped with AEDs. Their goal was to have one drone on scene within one minute for at least 90% of the demand while minimizing implementation costs. Maximum Coverage Location Problem model was used to determine the best configuration of drones to increase service. Using a combination of current EMS sites and new locations to launch drones equipped with AEDs would result in 90.3% of demand being reached within a minute. CrossRefPubMed • Pulver A, Wei R, Mann C. Locating AED enabled medical drones to enhance cardiac arrest response times. Prehosp Emerg Care. 2016;20(3):378–89. https://​doi.​org/​10.​3109/​10903127.​2015.​1115932. Investigators developed a geographical approach using drones equipped with AEDs. Their goal was to have one drone on scene within one minute for at least 90% of the demand while minimizing implementation costs. Maximum Coverage Location Problem model was used to determine the best configuration of drones to increase service. Using a combination of current EMS sites and new locations to launch drones equipped with AEDs would result in 90.3% of demand being reached within a minute. CrossRefPubMed
Metadaten
Titel
Delivery of Automated External Defibrillators (AED) by Drones: Implications for Emergency Cardiac Care
verfasst von
Jessica K. Zègre-Hemsey
Brittany Bogle
Christopher J. Cunningham
Kyle Snyder
Wayne Rosamond
Publikationsdatum
01.11.2018
Verlag
Springer US
Erschienen in
Current Cardiovascular Risk Reports / Ausgabe 11/2018
Print ISSN: 1932-9520
Elektronische ISSN: 1932-9563
DOI
https://doi.org/10.1007/s12170-018-0589-2

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.