Skip to main content
Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine 6/2016

03.06.2016 | Research Article

Denoising of MR spectroscopic imaging data using statistical selection of principal components

verfasst von: Abas Abdoli, Radka Stoyanova, Andrew A. Maudsley

Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine | Ausgabe 6/2016

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To evaluate a new denoising method for MR spectroscopic imaging (MRSI) data based on selection of signal-related principal components (SSPCs) from principal components analysis (PCA).

Materials and methods

A PCA-based method was implemented for selection of signal-related PCs and denoising achieved by reconstructing the original data set utilizing only these PCs. Performance was evaluated using simulated MRSI data and two volumetric in vivo MRSIs of human brain, from a normal subject and a patient with a brain tumor, using variable signal-to-noise ratios (SNRs), metabolite peak areas, Cramer-Rao bounds (CRBs) of fitted metabolite peak areas and metabolite linewidth.

Results

In simulated data, SSPC determined the correct number of signal-related PCs. For in vivo studies, the SSPC denoising resulted in improved SNRs and reduced metabolite quantification uncertainty compared to the original data and two other methods for denoising. The method also performed very well in preserving the spectral linewidth and peak areas. However, this method performs better for regions that have larger numbers of similar spectra.

Conclusion

The proposed SSPC denoising improved the SNR and metabolite quantification uncertainty in MRSI, with minimal compromise of the spectral information, and can result in increased accuracy.
Literatur
1.
Zurück zum Zitat Maudsley AA, Domenig C, Govind V, Darkazanli A, Studholme C, Arheart K, Bloomer C (2009) Mapping of brain metabolite distributions by volumetric proton MR spectroscopic imaging (MRSI). Magn Reson Med 61:548–559CrossRefPubMedPubMedCentral Maudsley AA, Domenig C, Govind V, Darkazanli A, Studholme C, Arheart K, Bloomer C (2009) Mapping of brain metabolite distributions by volumetric proton MR spectroscopic imaging (MRSI). Magn Reson Med 61:548–559CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Buades A, Coll B, Morel JM (2005) A review of image denoising algorithms, with a new one. Multiscale Model Simul 4:490–530CrossRef Buades A, Coll B, Morel JM (2005) A review of image denoising algorithms, with a new one. Multiscale Model Simul 4:490–530CrossRef
3.
Zurück zum Zitat Bartha R, Drost DJ, Williamson PC (1999) Factors affecting the quantification of short echo in vivo 1H MR spectra: prior knowledge, peak elimination, and filtering. NMR Biomed 12:205–216CrossRefPubMed Bartha R, Drost DJ, Williamson PC (1999) Factors affecting the quantification of short echo in vivo 1H MR spectra: prior knowledge, peak elimination, and filtering. NMR Biomed 12:205–216CrossRefPubMed
4.
Zurück zum Zitat Cancino-De-Greiff HF, Ramos-Garcia R, Lorenzo-Ginori JV (2002) Signal de-noising in magnetic resonance spectroscopy using wavelet transforms. Concepts Magn Reson 14:388–401CrossRef Cancino-De-Greiff HF, Ramos-Garcia R, Lorenzo-Ginori JV (2002) Signal de-noising in magnetic resonance spectroscopy using wavelet transforms. Concepts Magn Reson 14:388–401CrossRef
5.
Zurück zum Zitat Donoho DL, Johnstone Jain M (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81:425–455CrossRef Donoho DL, Johnstone Jain M (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81:425–455CrossRef
6.
Zurück zum Zitat Ojanen J, Miettinen T, Heikkonen J, Rissanen J (2004) Robust denoising of electrophoresis and mass spectrometry signals with minimum description length principle. FEBS Lett 570:107–113CrossRefPubMed Ojanen J, Miettinen T, Heikkonen J, Rissanen J (2004) Robust denoising of electrophoresis and mass spectrometry signals with minimum description length principle. FEBS Lett 570:107–113CrossRefPubMed
7.
Zurück zum Zitat Laruelo A, Chaari L, Batatia H, Ken S, Rowland B, Laprie A, Tourneret JY (2013) Hybrid sparse regularization for magnetic resonance spectroscopy. IEEE Eng Med Biol Soc, Osaka, pp 6768–6771 Laruelo A, Chaari L, Batatia H, Ken S, Rowland B, Laprie A, Tourneret JY (2013) Hybrid sparse regularization for magnetic resonance spectroscopy. IEEE Eng Med Biol Soc, Osaka, pp 6768–6771
8.
Zurück zum Zitat Ahmed OA (2005) New denoising scheme for magnetic resonance spectroscopy signals. IEEE Trans Med Imag 24:809–816CrossRef Ahmed OA (2005) New denoising scheme for magnetic resonance spectroscopy signals. IEEE Trans Med Imag 24:809–816CrossRef
9.
Zurück zum Zitat Ahmed OA, Fahmy MM (2001) NMR signal enhancement via a new time-frequency transform. IEEE Trans Med Imag 20:1018–1025CrossRef Ahmed OA, Fahmy MM (2001) NMR signal enhancement via a new time-frequency transform. IEEE Trans Med Imag 20:1018–1025CrossRef
10.
Zurück zum Zitat Eslami R, Jacob M (2009) Reduction of distortions in MRSI using a new signal model. IEEE Int Symp Biomed Imag, Boston, pp 438–441 Eslami R, Jacob M (2009) Reduction of distortions in MRSI using a new signal model. IEEE Int Symp Biomed Imag, Boston, pp 438–441
11.
Zurück zum Zitat Nguyen HM, Haldar JP, Do MN, Zhi-Pei L (2010) Denoising of MR spectroscopic imaging data with spatial-spectral regularization. IEEE Int Symp Biomed Imag, Rotterdam, pp 720–723 Nguyen HM, Haldar JP, Do MN, Zhi-Pei L (2010) Denoising of MR spectroscopic imaging data with spatial-spectral regularization. IEEE Int Symp Biomed Imag, Rotterdam, pp 720–723
12.
Zurück zum Zitat Lam F, Babacan SD, Haldar JP, Weiner MW, Schuff N, Liang ZP (2014) Denoising diffusion-weighted magnitude MR images using rank and edge constraints. Magn Reson Med 71:1272–1284CrossRefPubMedPubMedCentral Lam F, Babacan SD, Haldar JP, Weiner MW, Schuff N, Liang ZP (2014) Denoising diffusion-weighted magnitude MR images using rank and edge constraints. Magn Reson Med 71:1272–1284CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Lin X, Changqing W, Wufan C, Xiaoyun L (2014) Denoising multi-channel images in parallel MRI by low rank matrix decomposition. IEEE Trans Appl Supercond 24:1–5CrossRef Lin X, Changqing W, Wufan C, Xiaoyun L (2014) Denoising multi-channel images in parallel MRI by low rank matrix decomposition. IEEE Trans Appl Supercond 24:1–5CrossRef
14.
Zurück zum Zitat Zhou X, Yang C, Zhao H, Yu W (2014) Low-rank modeling and its applications in medical image analysis. ACM Comput Surv 47:1–35CrossRef Zhou X, Yang C, Zhao H, Yu W (2014) Low-rank modeling and its applications in medical image analysis. ACM Comput Surv 47:1–35CrossRef
15.
Zurück zum Zitat Stoyanova R, Brown TR (2001) NMR spectral quantitation by principal component analysis. NMR Biomed 14:271–277CrossRefPubMed Stoyanova R, Brown TR (2001) NMR spectral quantitation by principal component analysis. NMR Biomed 14:271–277CrossRefPubMed
16.
Zurück zum Zitat Stoyanova R, Querec TD, Brown TR, Patriotis C (2004) Normalization of single-channel DNA array data by principal component analysis. Bioinformatics 20:1772–1784CrossRefPubMed Stoyanova R, Querec TD, Brown TR, Patriotis C (2004) Normalization of single-channel DNA array data by principal component analysis. Bioinformatics 20:1772–1784CrossRefPubMed
17.
Zurück zum Zitat Brown TR, Stoyanova R (1996) NMR spectral quantitation by principal-component analysis. II. Determination of frequency and phase shifts. J Magn Reson B 112:32–43CrossRefPubMed Brown TR, Stoyanova R (1996) NMR spectral quantitation by principal-component analysis. II. Determination of frequency and phase shifts. J Magn Reson B 112:32–43CrossRefPubMed
18.
Zurück zum Zitat Stoyanova R, Brown TR (2002) NMR spectral quantitation by principal component analysis. III. A generalized procedure for determination of lineshape variations. J Magn Reson 154:163–175CrossRefPubMed Stoyanova R, Brown TR (2002) NMR spectral quantitation by principal component analysis. III. A generalized procedure for determination of lineshape variations. J Magn Reson 154:163–175CrossRefPubMed
19.
Zurück zum Zitat Zhu XP, Du AT, Jahng GH, Soher BJ, Maudsley AA, Weiner MW, Schuff N (2003) Magnetic resonance spectroscopic imaging reconstruction with deformable shape-intensity models. Magn Reson Med 50:474–482CrossRefPubMedPubMedCentral Zhu XP, Du AT, Jahng GH, Soher BJ, Maudsley AA, Weiner MW, Schuff N (2003) Magnetic resonance spectroscopic imaging reconstruction with deformable shape-intensity models. Magn Reson Med 50:474–482CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Nguyen HM, Peng X, Do MN, Liang ZP (2013) Denoising MR spectroscopic imaging data with low-rank approximations. IEEE Trans Biomed Eng 60:78–89CrossRefPubMed Nguyen HM, Peng X, Do MN, Liang ZP (2013) Denoising MR spectroscopic imaging data with low-rank approximations. IEEE Trans Biomed Eng 60:78–89CrossRefPubMed
21.
Zurück zum Zitat Kasten J, Lazeyras F, Van De Ville D (2013) Data-driven MRSI spectral localization via low-rank component analysis. IEEE Trans Med Imag 32:1853–1863CrossRef Kasten J, Lazeyras F, Van De Ville D (2013) Data-driven MRSI spectral localization via low-rank component analysis. IEEE Trans Med Imag 32:1853–1863CrossRef
22.
Zurück zum Zitat Shibata R (1976) Selection of the order of an autoregressive model by Akaike’s information criterion. Biometrika 63:117–126CrossRef Shibata R (1976) Selection of the order of an autoregressive model by Akaike’s information criterion. Biometrika 63:117–126CrossRef
23.
Zurück zum Zitat Gastwirth JL, Gel YR, Miao W (2009) The impact of Levene’s test of equality of variances on statistical theory and practice. Stat Sci 24:343–360CrossRef Gastwirth JL, Gel YR, Miao W (2009) The impact of Levene’s test of equality of variances on statistical theory and practice. Stat Sci 24:343–360CrossRef
24.
Zurück zum Zitat Maudsley AA, Darkazanli A, Alger JR et al (2006) Comprehensive processing, display and analysis for in vivo MR spectroscopic imaging. NMR Biomed 19:492–503CrossRefPubMedPubMedCentral Maudsley AA, Darkazanli A, Alger JR et al (2006) Comprehensive processing, display and analysis for in vivo MR spectroscopic imaging. NMR Biomed 19:492–503CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Maudsley AA, Domenig C, Ramsay RE, Bowen BC (2010) Application of volumetric MR spectroscopic imaging for localization of neocortical epilepsy. Epilepsy Res 88:127–138CrossRefPubMed Maudsley AA, Domenig C, Ramsay RE, Bowen BC (2010) Application of volumetric MR spectroscopic imaging for localization of neocortical epilepsy. Epilepsy Res 88:127–138CrossRefPubMed
26.
Zurück zum Zitat Sabati M, Sheriff S, Gu M, Wei J, Zhu H, Barker PB, Spielman DM, Alger JR, Maudsley AA (2015) Multivendor implementation and comparison of volumetric whole-brain echo-planar MR spectroscopic imaging. Magn Reson Med 74:1209–1220CrossRefPubMed Sabati M, Sheriff S, Gu M, Wei J, Zhu H, Barker PB, Spielman DM, Alger JR, Maudsley AA (2015) Multivendor implementation and comparison of volumetric whole-brain echo-planar MR spectroscopic imaging. Magn Reson Med 74:1209–1220CrossRefPubMed
27.
Zurück zum Zitat Maudsley AA, Darkazanli A, Alger JR, Hall LO, Schuff N, Studholme C, Yu Y, Ebel A, Frew A, Goldgof D, Gu Y, Pagare R, Rousseau F, Sivasankaran K, Soher BJ, Weber P, Young K, Zhu X (2006) Comprehensive processing, display and analysis for in vivo MR spectroscopic imaging. NMR Biomed 19:492–503CrossRefPubMedPubMedCentral Maudsley AA, Darkazanli A, Alger JR, Hall LO, Schuff N, Studholme C, Yu Y, Ebel A, Frew A, Goldgof D, Gu Y, Pagare R, Rousseau F, Sivasankaran K, Soher BJ, Weber P, Young K, Zhu X (2006) Comprehensive processing, display and analysis for in vivo MR spectroscopic imaging. NMR Biomed 19:492–503CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Metzger G, Hu X (1997) Application of interlaced Fourier transform to echo-planar spectroscopic imaging. J Magn Reson 125:166–170CrossRefPubMed Metzger G, Hu X (1997) Application of interlaced Fourier transform to echo-planar spectroscopic imaging. J Magn Reson 125:166–170CrossRefPubMed
29.
Zurück zum Zitat Abdoli A, Maudsley AA (2015) Phased-array combination for MR spectroscopic imaging using a water reference. Magn Reson in Med. doi:10.1002/mrm.25992 Abdoli A, Maudsley AA (2015) Phased-array combination for MR spectroscopic imaging using a water reference. Magn Reson in Med. doi:10.​1002/​mrm.​25992
30.
Zurück zum Zitat Haupt CI, Schuff N, Weiner MW, Maudsley AA (1996) Removal of lipid artifacts in 1H spectroscopic imaging by data extrapolation. Magn Reson Med 35:678–687CrossRefPubMedPubMedCentral Haupt CI, Schuff N, Weiner MW, Maudsley AA (1996) Removal of lipid artifacts in 1H spectroscopic imaging by data extrapolation. Magn Reson Med 35:678–687CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Soher BJ, Young K, Govindaraju V, Maudsley AA (1998) Automated spectral analysis III: application to in vivo proton MR spectroscopy and spectroscopic imaging. Magn Reson Med 40:822–831CrossRefPubMed Soher BJ, Young K, Govindaraju V, Maudsley AA (1998) Automated spectral analysis III: application to in vivo proton MR spectroscopy and spectroscopic imaging. Magn Reson Med 40:822–831CrossRefPubMed
32.
Zurück zum Zitat Cadzow JA (1988) Signal enhancement-a composite property mapping algorithm. IEEE Trans Acoust Speech Signal Process 36:49–62CrossRef Cadzow JA (1988) Signal enhancement-a composite property mapping algorithm. IEEE Trans Acoust Speech Signal Process 36:49–62CrossRef
Metadaten
Titel
Denoising of MR spectroscopic imaging data using statistical selection of principal components
verfasst von
Abas Abdoli
Radka Stoyanova
Andrew A. Maudsley
Publikationsdatum
03.06.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Magnetic Resonance Materials in Physics, Biology and Medicine / Ausgabe 6/2016
Print ISSN: 0968-5243
Elektronische ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-016-0566-z

Weitere Artikel der Ausgabe 6/2016

Magnetic Resonance Materials in Physics, Biology and Medicine 6/2016 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.