Skip to main content
Erschienen in: Calcified Tissue International 5/2018

18.07.2018 | Original Research

Deproteinization of Cortical Bone: Effects of Different Treatments

verfasst von: Frances Y. Su, Siyuan Pang, Yik Tung Tracy Ling, Peter Shyu, Ekaterina Novitskaya, Kyungah Seo, Sofia Lambert, Kimberlin Zarate, Olivia A. Graeve, Iwona Jasiuk, Joanna McKittrick

Erschienen in: Calcified Tissue International | Ausgabe 5/2018

Einloggen, um Zugang zu erhalten

Abstract

Bone is a biological composite material having collagen and mineral as its main constituents. In order to better understand the arrangement of the mineral phase in bone, porcine cortical bone was deproteinized using different chemical treatments. This study aims to determine the best method to remove the protein constituent while preserving the mineral component. Chemicals used were H2O2, NaOCl, NaOH, and KOH, and the efficacy of deproteinization treatments was determined by thermogravimetric analysis and Raman spectroscopy. The structure of the residual mineral parts was examined using scanning electron microscopy. X-ray diffraction was used to confirm that the mineral component was not altered by the chemical treatments. NaOCl was found to be the most effective method for deproteinization and the mineral phase was self-standing, supporting the hypothesis that bone is an interpenetrating composite. Thermogravimetric analyses and Raman spectroscopy results showed the preservation of mineral crystallinity and presence of residual organic material after all chemical treatments. A defatting step, which has not previously been used in conjunction with deproteinization to isolate the mineral phase, was also used. Finally, Raman spectroscopy demonstrated that the inclusion of a defatting procedure resulted in the removal of some but not all residual protein in the bone.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Weiner S, Wagner HD (1998) The material bone: Structure mechanical function relations. Annu Rev Mater Sci 28:271–298CrossRef Weiner S, Wagner HD (1998) The material bone: Structure mechanical function relations. Annu Rev Mater Sci 28:271–298CrossRef
3.
Zurück zum Zitat Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52:1263–1334CrossRef Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52:1263–1334CrossRef
4.
Zurück zum Zitat Olszta MJ, Cheng XG, Jee SS, Kumar R, Kim YY, Kaufman MJ, Douglas EP, Gower LB (2007) Bone structure and formation: A new perspective. Mater Sci Eng R 58:77–116CrossRef Olszta MJ, Cheng XG, Jee SS, Kumar R, Kim YY, Kaufman MJ, Douglas EP, Gower LB (2007) Bone structure and formation: A new perspective. Mater Sci Eng R 58:77–116CrossRef
5.
Zurück zum Zitat Goldberg M, Boskey AL (1996) Lipids and biomineralizations. Prog Histochem Cyto 31:III1–I187 Goldberg M, Boskey AL (1996) Lipids and biomineralizations. Prog Histochem Cyto 31:III1–I187
6.
Zurück zum Zitat Boskey AL (2001) Bone mineralization. In: Cowin SC (ed) Bone mechanics handbook. CRC Press, Boca Raton, pp 5.1–5.33 Boskey AL (2001) Bone mineralization. In: Cowin SC (ed) Bone mechanics handbook. CRC Press, Boca Raton, pp 5.1–5.33
7.
Zurück zum Zitat Baselt DR, Revel JP, Baldeschwieler JD (1993) Subfibrillar structure of type I collagen observed by atomic force microscopy. Biophys J 65:2644–2655CrossRefPubMedCentral Baselt DR, Revel JP, Baldeschwieler JD (1993) Subfibrillar structure of type I collagen observed by atomic force microscopy. Biophys J 65:2644–2655CrossRefPubMedCentral
8.
Zurück zum Zitat Fratzl P (2008) Collagen: structure and mechanics. Springer, New YorkCrossRef Fratzl P (2008) Collagen: structure and mechanics. Springer, New YorkCrossRef
9.
Zurück zum Zitat Landis WJ, Song MJ, Leith A, McEwen L, McEwen BF (1993) Mineral and organic matrix interaction in normally calcifying tendon visualized in 3 dimensions by high-voltage electron-microscopic tomography and graphic image reconstruction. J Struct Biol 110:39–54CrossRefPubMedCentral Landis WJ, Song MJ, Leith A, McEwen L, McEwen BF (1993) Mineral and organic matrix interaction in normally calcifying tendon visualized in 3 dimensions by high-voltage electron-microscopic tomography and graphic image reconstruction. J Struct Biol 110:39–54CrossRefPubMedCentral
10.
Zurück zum Zitat Currey JD (2002) Bones: structure and mechanics. Princeton University Press, Princeton Currey JD (2002) Bones: structure and mechanics. Princeton University Press, Princeton
11.
Zurück zum Zitat Barkaoui A, Bettamer A, Hambli R (2011) Failure of mineralized collagen microfibrils using finite element simulation coupled to mechanical quasi-brittle damage. Procedia Eng 10:3185–3190CrossRef Barkaoui A, Bettamer A, Hambli R (2011) Failure of mineralized collagen microfibrils using finite element simulation coupled to mechanical quasi-brittle damage. Procedia Eng 10:3185–3190CrossRef
12.
Zurück zum Zitat Barkaoui A, Bettamer A, Hambli R (2012) Mechanical behavior of single mineralized collagen fibril using finite element simulation coupled to quasi-brittle damage law. In: ECCOMAS, pp. 1357–1365 Barkaoui A, Bettamer A, Hambli R (2012) Mechanical behavior of single mineralized collagen fibril using finite element simulation coupled to quasi-brittle damage law. In: ECCOMAS, pp. 1357–1365
13.
Zurück zum Zitat Barkaoui A, Hambli R (2014) Nanomechanical properties of mineralised collagen microfibrils based on finite elements method: biomechanical role of cross-links. Comput Methods Biomech Biomed Eng 17:1590–1601CrossRef Barkaoui A, Hambli R (2014) Nanomechanical properties of mineralised collagen microfibrils based on finite elements method: biomechanical role of cross-links. Comput Methods Biomech Biomed Eng 17:1590–1601CrossRef
14.
Zurück zum Zitat Barkaoui A, Hambli R, Tavares JMRS (2015) Effect of material and structural factors on fracture behaviour of mineralised collagen microfibril using finite element simulation. Comput Methods Biomech Biomed Eng 18:1181–1190CrossRef Barkaoui A, Hambli R, Tavares JMRS (2015) Effect of material and structural factors on fracture behaviour of mineralised collagen microfibril using finite element simulation. Comput Methods Biomech Biomed Eng 18:1181–1190CrossRef
15.
Zurück zum Zitat Schwarcz HP (2015) The ultrastructure of bone as revealed in electron microscopy of ion-milled sections. Semin Cell Dev Biol 46:44–50CrossRefPubMedCentral Schwarcz HP (2015) The ultrastructure of bone as revealed in electron microscopy of ion-milled sections. Semin Cell Dev Biol 46:44–50CrossRefPubMedCentral
16.
Zurück zum Zitat Benezra Rosen V, Hobbs LW, Spector M (2002) The ultrastructure of anorganic bovine bone and selected synthetic hyroxyapatites used as bone graft substitute materials. Biomaterials 23:921–928CrossRefPubMedCentral Benezra Rosen V, Hobbs LW, Spector M (2002) The ultrastructure of anorganic bovine bone and selected synthetic hyroxyapatites used as bone graft substitute materials. Biomaterials 23:921–928CrossRefPubMedCentral
17.
Zurück zum Zitat Chen P-Y, Toroian D, Price PA, McKittrick J (2011) Minerals form a continuum phase in mature cancellous bone. Calcif Tissue Int 81:351–361CrossRef Chen P-Y, Toroian D, Price PA, McKittrick J (2011) Minerals form a continuum phase in mature cancellous bone. Calcif Tissue Int 81:351–361CrossRef
18.
Zurück zum Zitat Chen P-Y, McKittrick J (2011) Compressive mechanical properties of demineralized and deproteinized cancellous bone. J Mech Behav Biomed 4:961–973CrossRef Chen P-Y, McKittrick J (2011) Compressive mechanical properties of demineralized and deproteinized cancellous bone. J Mech Behav Biomed 4:961–973CrossRef
19.
Zurück zum Zitat Novitskaya E, Chen PY, Lee S, Castro-Cesena A, Hirata G, Lubarda VA, McKittrick J (2011) Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents. Acta Biomater 7:3170–3177CrossRefPubMedCentral Novitskaya E, Chen PY, Lee S, Castro-Cesena A, Hirata G, Lubarda VA, McKittrick J (2011) Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents. Acta Biomater 7:3170–3177CrossRefPubMedCentral
20.
Zurück zum Zitat Bigi A, Ripamonti A, Cojazzi G, Pizzuto G, Roveri N, Koch MHJ (1991) Structural analysis of turkey tendon collagen upon removal of the inorganic phase. Int J Biol Macromol 13:110–114CrossRefPubMedCentral Bigi A, Ripamonti A, Cojazzi G, Pizzuto G, Roveri N, Koch MHJ (1991) Structural analysis of turkey tendon collagen upon removal of the inorganic phase. Int J Biol Macromol 13:110–114CrossRefPubMedCentral
21.
Zurück zum Zitat Venkatesan J, Qian ZJ, Ryu B, Thomas NV, Kim SK (2011) A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone. Biomed Mater 6:035003CrossRefPubMedCentral Venkatesan J, Qian ZJ, Ryu B, Thomas NV, Kim SK (2011) A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone. Biomed Mater 6:035003CrossRefPubMedCentral
22.
Zurück zum Zitat Barakat NAM, Khalil KA, Sheikh FA, Omran AM, Gaihre B, Khil SM, Kim HY (2008) Physiochemical characterizations of hydroxyapatite extracted from bovine bones by three different methods: extraction of biologically desirable HAp. Mater Sci Eng C 28:1381–1387CrossRef Barakat NAM, Khalil KA, Sheikh FA, Omran AM, Gaihre B, Khil SM, Kim HY (2008) Physiochemical characterizations of hydroxyapatite extracted from bovine bones by three different methods: extraction of biologically desirable HAp. Mater Sci Eng C 28:1381–1387CrossRef
23.
Zurück zum Zitat Barakat NAM, Khil MS, Omran AM, Sheikh FA, Kim HY (2009) Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods. J Mater Process Technol 209:3408–3415CrossRef Barakat NAM, Khil MS, Omran AM, Sheikh FA, Kim HY (2009) Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods. J Mater Process Technol 209:3408–3415CrossRef
24.
Zurück zum Zitat Ooi CY, Hamdi M, Ramesh S (2007) Properties of hydroxyapatite produced by annealing of bovine bone. Ceram Int 33:1171–1177CrossRef Ooi CY, Hamdi M, Ramesh S (2007) Properties of hydroxyapatite produced by annealing of bovine bone. Ceram Int 33:1171–1177CrossRef
25.
Zurück zum Zitat Toque JA, Herliansyah MK, Hamdi M, Ide-Ektessabi A, Wildan MW (2007) The effect of sample preparation and calcination temperature on the production of hydroxyapatite from bovine bone powders. In: Ibrahim F, Osman NAA, Usman J, Kadri NA (eds) 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006: Biomed 2006, 11–14 December 2006 Kuala Lumpur, Malaysia. Springer, Berlin, pp 152–155 Toque JA, Herliansyah MK, Hamdi M, Ide-Ektessabi A, Wildan MW (2007) The effect of sample preparation and calcination temperature on the production of hydroxyapatite from bovine bone powders. In: Ibrahim F, Osman NAA, Usman J, Kadri NA (eds) 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006: Biomed 2006, 11–14 December 2006 Kuala Lumpur, Malaysia. Springer, Berlin, pp 152–155
26.
Zurück zum Zitat Termine JD, Eanes ED, Greenfield DJ, Nylen MU, Harper RA (1973) Hydrazine-deproteinated bone mineral. Calcif Tissue Res 12:73–90CrossRefPubMedCentral Termine JD, Eanes ED, Greenfield DJ, Nylen MU, Harper RA (1973) Hydrazine-deproteinated bone mineral. Calcif Tissue Res 12:73–90CrossRefPubMedCentral
27.
Zurück zum Zitat Bertazzo S, Bertran CA (2008) Effect of hydrazine deproteination on bone mineral phase: a critical view. J Inorg Biochem 102:137–145CrossRefPubMedCentral Bertazzo S, Bertran CA (2008) Effect of hydrazine deproteination on bone mineral phase: a critical view. J Inorg Biochem 102:137–145CrossRefPubMedCentral
28.
Zurück zum Zitat Kim HM, Rey C, Glimcher MJ (1995) Isolation of calcium-phosphate crystals of bone by non-aqueous methods at low temperature. J Bone Miner Res 10:1589–1601CrossRefPubMedCentral Kim HM, Rey C, Glimcher MJ (1995) Isolation of calcium-phosphate crystals of bone by non-aqueous methods at low temperature. J Bone Miner Res 10:1589–1601CrossRefPubMedCentral
29.
Zurück zum Zitat Tomazic BB, Brown WE, Eanes ED (1993) A critical evaluation of the purification of biominerals by hypochlorite treatment. J Biomed Mater Res A 27:217–225CrossRef Tomazic BB, Brown WE, Eanes ED (1993) A critical evaluation of the purification of biominerals by hypochlorite treatment. J Biomed Mater Res A 27:217–225CrossRef
30.
Zurück zum Zitat Wynnyckyj C, Omelon S, Willett T, Kyle K, Goldberg H, Grynpas M (2011) Mechanism of bone collagen degradation due to KOH treatment. Biochim. Biophys Acta Gen Subj 1810:192–201CrossRef Wynnyckyj C, Omelon S, Willett T, Kyle K, Goldberg H, Grynpas M (2011) Mechanism of bone collagen degradation due to KOH treatment. Biochim. Biophys Acta Gen Subj 1810:192–201CrossRef
31.
Zurück zum Zitat Karlsmark T, Danielsen L, Thomsen HK, Aalund O, Nielsen KG, Nielsen O, Genefke IK (1988) The effect of sodium hydroxide and hydrochloric acid on pig dermis. A light microscopic study. Forensic Sci Int 39:227–233CrossRefPubMedCentral Karlsmark T, Danielsen L, Thomsen HK, Aalund O, Nielsen KG, Nielsen O, Genefke IK (1988) The effect of sodium hydroxide and hydrochloric acid on pig dermis. A light microscopic study. Forensic Sci Int 39:227–233CrossRefPubMedCentral
32.
Zurück zum Zitat Uklejewski R, Winiecki M, Musielak G, Tokłowicz R (2015) Effectiveness of various deproteinization processes of bovine cancellous bone evaluated via mechano-biostructural properties of produced osteoconductive biomaterials. Biotechnol Bioprocess E 20:259–266CrossRef Uklejewski R, Winiecki M, Musielak G, Tokłowicz R (2015) Effectiveness of various deproteinization processes of bovine cancellous bone evaluated via mechano-biostructural properties of produced osteoconductive biomaterials. Biotechnol Bioprocess E 20:259–266CrossRef
34.
Zurück zum Zitat Chen P-Y, Toroian D, Price PA, McKittrick J (2011) Minerals form a continuum phase in mature cancellous bone. Calcif Tissue Int 88:351–361CrossRefPubMedCentral Chen P-Y, Toroian D, Price PA, McKittrick J (2011) Minerals form a continuum phase in mature cancellous bone. Calcif Tissue Int 88:351–361CrossRefPubMedCentral
35.
Zurück zum Zitat Termine JD, Belcourt AB, Conn KM, Kleinman HK (1981) Mineral and collagen-binding proteins of fetal calf bone. J Biol Chem 256:403–408 Termine JD, Belcourt AB, Conn KM, Kleinman HK (1981) Mineral and collagen-binding proteins of fetal calf bone. J Biol Chem 256:403–408
36.
Zurück zum Zitat Termine JD, Conn KM, Kleinman HK, Martin GR, Whitson SW (1981) Osteonectin, a mineral and collagen binding-protein of fetal calf bone. Calcif Tissue Int 33:302–302 Termine JD, Conn KM, Kleinman HK, Martin GR, Whitson SW (1981) Osteonectin, a mineral and collagen binding-protein of fetal calf bone. Calcif Tissue Int 33:302–302
37.
Zurück zum Zitat Glimcher MJ (1989) Mechanism of calcification: role of collagen fibrils and collagen phosphoprotein complexes in vitro and in vivo. Anat Rec 224:139–153CrossRefPubMedCentral Glimcher MJ (1989) Mechanism of calcification: role of collagen fibrils and collagen phosphoprotein complexes in vitro and in vivo. Anat Rec 224:139–153CrossRefPubMedCentral
38.
Zurück zum Zitat Morris MD, Mandair GS (2011) Raman assessment of bone quality. Clin Orthop Relat R 469:2160–2169CrossRef Morris MD, Mandair GS (2011) Raman assessment of bone quality. Clin Orthop Relat R 469:2160–2169CrossRef
39.
Zurück zum Zitat Mandair GS, Morris MD (2015) Contributions of Raman spectroscopy to the understanding of bone strength. BoneKEy Rep 4:620CrossRefPubMedCentral Mandair GS, Morris MD (2015) Contributions of Raman spectroscopy to the understanding of bone strength. BoneKEy Rep 4:620CrossRefPubMedCentral
40.
Zurück zum Zitat Akkus O, Adar F, Schaffler MB (2004) Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34:443–453CrossRefPubMedCentral Akkus O, Adar F, Schaffler MB (2004) Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34:443–453CrossRefPubMedCentral
41.
Zurück zum Zitat Martiniaková M, Grosskopf B, Omelka R, Vondrakova M, Bauerova M (2006) Differences among species in compact bone tissue microstructure of mammalian skeleton: use of a discriminant function analysis for species identification. J Forensic Sci 51:1235–1239CrossRefPubMedCentral Martiniaková M, Grosskopf B, Omelka R, Vondrakova M, Bauerova M (2006) Differences among species in compact bone tissue microstructure of mammalian skeleton: use of a discriminant function analysis for species identification. J Forensic Sci 51:1235–1239CrossRefPubMedCentral
42.
Zurück zum Zitat Urist MR, Behnam K, Kerendi F, Raskin K, Nuygen TD, Shamie AN, Malinin TI (1997) Lipids closely associated with bone morphogenetic protein (BMP) and induced heterotopic bone formation. With preliminary observations of deficiencies in lipid and osteoinduction in lathyrism in rats. Connect Tissue Res 36:9–20CrossRefPubMedCentral Urist MR, Behnam K, Kerendi F, Raskin K, Nuygen TD, Shamie AN, Malinin TI (1997) Lipids closely associated with bone morphogenetic protein (BMP) and induced heterotopic bone formation. With preliminary observations of deficiencies in lipid and osteoinduction in lathyrism in rats. Connect Tissue Res 36:9–20CrossRefPubMedCentral
43.
Zurück zum Zitat Fages J, Marty A, Delga C, Condoret JS, Combes D, Frayssinet P (1994) Use of supercritical CO2 for bone delipidation. Biomaterials 15:650–656CrossRefPubMedCentral Fages J, Marty A, Delga C, Condoret JS, Combes D, Frayssinet P (1994) Use of supercritical CO2 for bone delipidation. Biomaterials 15:650–656CrossRefPubMedCentral
46.
Zurück zum Zitat Almany Magal R, Reznikov N, Shahar R, Weiner S (2014) Three-dimensional structure of minipig fibrolamellar bone: adaptation to axial loading. J Struct Biol 186:253–264CrossRefPubMedCentral Almany Magal R, Reznikov N, Shahar R, Weiner S (2014) Three-dimensional structure of minipig fibrolamellar bone: adaptation to axial loading. J Struct Biol 186:253–264CrossRefPubMedCentral
47.
Zurück zum Zitat Chittenden M, Najafi AR, Li J, Jasiuk I (2015) Nanoindentation and ash content study of age dependent changes in porcine cortical bone. J Mech Med Biol 15:1550074CrossRef Chittenden M, Najafi AR, Li J, Jasiuk I (2015) Nanoindentation and ash content study of age dependent changes in porcine cortical bone. J Mech Med Biol 15:1550074CrossRef
48.
Zurück zum Zitat Martiniaková M, Grosskopf B, Omelka R, Dammers K, Vondráková M, Bauerová M (2007) Histological study of compact bone tissue in some mammals: a method for species determination. Int J Osteoarchaeol 17:82–90CrossRef Martiniaková M, Grosskopf B, Omelka R, Dammers K, Vondráková M, Bauerová M (2007) Histological study of compact bone tissue in some mammals: a method for species determination. Int J Osteoarchaeol 17:82–90CrossRef
49.
Zurück zum Zitat Mehdawi IM, Young A (2015) Antibacterial composite restorative materials for dental applications. In: Biomaterials and medical device—associated infections. Woodhead Publishing, Oxford, pp 199–221CrossRef Mehdawi IM, Young A (2015) Antibacterial composite restorative materials for dental applications. In: Biomaterials and medical device—associated infections. Woodhead Publishing, Oxford, pp 199–221CrossRef
50.
Zurück zum Zitat Bagambisa F, Joos U, Schilli W (1993) A scanning electron microscope study of the ultrastructural organization of bone mineral. Cell Mater 3:10 Bagambisa F, Joos U, Schilli W (1993) A scanning electron microscope study of the ultrastructural organization of bone mineral. Cell Mater 3:10
51.
Zurück zum Zitat Chen P-Y, Novitskaya E, Sun C-Y, McKittrick J, Lopez MI (2014) Toward a better understanding of mineral microstructure in bony tissues. Bioinspired Biomimetic Nanobiomaterials 3:71–84CrossRef Chen P-Y, Novitskaya E, Sun C-Y, McKittrick J, Lopez MI (2014) Toward a better understanding of mineral microstructure in bony tissues. Bioinspired Biomimetic Nanobiomaterials 3:71–84CrossRef
52.
Zurück zum Zitat Fratzl P, Schreiber S, Klaushofer K (1996) Bone mineralization as studied by small-angle X-ray scattering. Connect Tissue Res 35:9–16 Fratzl P, Schreiber S, Klaushofer K (1996) Bone mineralization as studied by small-angle X-ray scattering. Connect Tissue Res 35:9–16
53.
Zurück zum Zitat Hamed E, Novitskaya EE, Li J, Chen P-Y, Jasiuk I, McKittrick J (2012) Elastic moduli of untreated, demineralized, and deproteinized cortical bone: validation of a theoretical model of bone as an interpenetrating composite material. Acta Biomater 8:1080–1092CrossRefPubMedCentral Hamed E, Novitskaya EE, Li J, Chen P-Y, Jasiuk I, McKittrick J (2012) Elastic moduli of untreated, demineralized, and deproteinized cortical bone: validation of a theoretical model of bone as an interpenetrating composite material. Acta Biomater 8:1080–1092CrossRefPubMedCentral
54.
Zurück zum Zitat Di Renzo M, Ellis TH, Sacher E, Stangel I (2001) A photoacoustic FTIRS study of the chemical modifications of human dentin surfaces: II. Deproteination Biomater 22:793–797CrossRef Di Renzo M, Ellis TH, Sacher E, Stangel I (2001) A photoacoustic FTIRS study of the chemical modifications of human dentin surfaces: II. Deproteination Biomater 22:793–797CrossRef
55.
Zurück zum Zitat Tas AC (2012) X-ray diffraction data for flux-grown calcium hydroxyapatite whiskers. Powder Diffr 16:102–106CrossRef Tas AC (2012) X-ray diffraction data for flux-grown calcium hydroxyapatite whiskers. Powder Diffr 16:102–106CrossRef
56.
57.
Zurück zum Zitat Meneghini C, Dalconi MC, Nuzzo S, Mobilio S, Wenk RH (2003) Rietveld refinement on X-ray diffraction patterns of bioapatite in human fetal bones. Biophys J 84:2021–2029CrossRefPubMedCentral Meneghini C, Dalconi MC, Nuzzo S, Mobilio S, Wenk RH (2003) Rietveld refinement on X-ray diffraction patterns of bioapatite in human fetal bones. Biophys J 84:2021–2029CrossRefPubMedCentral
58.
Zurück zum Zitat Rey C, Shimizu M, Collins B, Glimcher MJ (1990) Resolution-enhanced fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: investigations in the v4 PO4 domain. Calcif Tissue Int 46:384–394CrossRefPubMedCentral Rey C, Shimizu M, Collins B, Glimcher MJ (1990) Resolution-enhanced fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: investigations in the v4 PO4 domain. Calcif Tissue Int 46:384–394CrossRefPubMedCentral
59.
Zurück zum Zitat Francis MD, Webb NC (1970) Hydroxyapatite formation from a hydrated calcium monohydrogen phosphate precursor. Calcif Tissue Int 6:335–342CrossRef Francis MD, Webb NC (1970) Hydroxyapatite formation from a hydrated calcium monohydrogen phosphate precursor. Calcif Tissue Int 6:335–342CrossRef
60.
Zurück zum Zitat Lin F-H, Lin C-C, Lu C-M, Liu H-C, Sun J-S, Wang C-Y (1995) Mechanical properties and histological evaluation of sintered β-Ca2P2O7 with Na4P2O7 · 10H2O addition. Biomaterials 16:793–802CrossRefPubMedCentral Lin F-H, Lin C-C, Lu C-M, Liu H-C, Sun J-S, Wang C-Y (1995) Mechanical properties and histological evaluation of sintered β-Ca2P2O7 with Na4P2O7 · 10H2O addition. Biomaterials 16:793–802CrossRefPubMedCentral
61.
Zurück zum Zitat Johnsson MS-A, Nancollas GH (1992) The role of brushite and octacalcium phosphate in apatite formation. Crit Rev Oral Biol Med 3:61–82CrossRefPubMedCentral Johnsson MS-A, Nancollas GH (1992) The role of brushite and octacalcium phosphate in apatite formation. Crit Rev Oral Biol Med 3:61–82CrossRefPubMedCentral
62.
Zurück zum Zitat Crane NJ, Popescu V, Morris MD, Steenhuis P, Ignelzi MA (2006) Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. Bone 39:434–442CrossRefPubMedCentral Crane NJ, Popescu V, Morris MD, Steenhuis P, Ignelzi MA (2006) Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. Bone 39:434–442CrossRefPubMedCentral
63.
Zurück zum Zitat Czamara K, Majzner K, Pacia MZ, Kochan K, Kaczor A, Baranska M (2015) Raman spectroscopy of lipids: a review. J Raman Spectrosc 46:4–20CrossRef Czamara K, Majzner K, Pacia MZ, Kochan K, Kaczor A, Baranska M (2015) Raman spectroscopy of lipids: a review. J Raman Spectrosc 46:4–20CrossRef
Metadaten
Titel
Deproteinization of Cortical Bone: Effects of Different Treatments
verfasst von
Frances Y. Su
Siyuan Pang
Yik Tung Tracy Ling
Peter Shyu
Ekaterina Novitskaya
Kyungah Seo
Sofia Lambert
Kimberlin Zarate
Olivia A. Graeve
Iwona Jasiuk
Joanna McKittrick
Publikationsdatum
18.07.2018
Verlag
Springer US
Erschienen in
Calcified Tissue International / Ausgabe 5/2018
Print ISSN: 0171-967X
Elektronische ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-018-0453-x

Weitere Artikel der Ausgabe 5/2018

Calcified Tissue International 5/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.