Skip to main content
Erschienen in: Archives of Dermatological Research 5/2018

27.04.2018 | Original Paper

Dermal white adipose tissue undergoes major morphological changes during the spontaneous and induced murine hair follicle cycling: a reappraisal

verfasst von: April R. Foster, Carina Nicu, Marlon R. Schneider, Eleanor Hinde, Ralf Paus

Erschienen in: Archives of Dermatological Research | Ausgabe 5/2018

Einloggen, um Zugang zu erhalten

Abstract

In murine skin, dermal white adipose tissue (DWAT) undergoes major changes in thickness in synchrony with the hair cycle (HC); however, the underlying mechanisms remain unclear. We sought to elucidate whether increased DWAT thickness during anagen is mediated by adipocyte hypertrophy or adipogenesis, and whether lipolysis or apoptosis can explain the decreased DWAT thickness during catagen. In addition, we compared HC-associated DWAT changes between spontaneous and depilation-induced hair follicle (HF) cycling to distinguish between spontaneous and HF trauma-induced events. We show that HC-dependent DWAT remodelling is not an artefact caused by fluctuations in HF down-growth, and that dermal adipocyte (DA) proliferation and hypertrophy are HC-dependent, while classical DA apoptosis is absent. However, none of these changes plausibly accounts for HC-dependent oscillations in DWAT thickness. Contrary to previous studies, in vivo BODIPY uptake suggests that increased DWAT thickness during anagen occurs via hypertrophy rather than hyperplasia. From immunohistomorphometry, DWAT thickness likely undergoes thinning during catagen by lipolysis. Hence, we postulate that progressive, lipogenesis-driven DA hypertrophy followed by dynamic switches between lipogenesis and lipolysis underlie DWAT fluctuations in the spontaneous HC, and dismiss apoptosis as a mechanism of DWAT reduction. Moreover, the depilation-induced HC displays increased DWAT thickness, area, and DA number, but decreased DA volume/area compared to the spontaneous HC. Thus, DWAT shows additional, novel HF wounding-related responses during the induced HC. This systematic reappraisal provides important pointers for subsequent functional and mechanistic studies, and introduces the depilation-induced murine HC as a model for dissecting HF–DWAT interactions under conditions of wounding/stress.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
2.
Zurück zum Zitat Al-Nuaimi Y, Goodfellow M, Paus R, Baier G (2012) A prototypic mathematical model of the human hair cycle. J Theor Biol 310:143–159CrossRefPubMed Al-Nuaimi Y, Goodfellow M, Paus R, Baier G (2012) A prototypic mathematical model of the human hair cycle. J Theor Biol 310:143–159CrossRefPubMed
3.
Zurück zum Zitat Ansell DM, Kloepper JE, Thomason HA et al (2011) Exploring the “hair growth-wound healing connection”: anagen phase promotes wound re-epithelialization. J Invest Dermatol 131:518–528CrossRefPubMed Ansell DM, Kloepper JE, Thomason HA et al (2011) Exploring the “hair growth-wound healing connection”: anagen phase promotes wound re-epithelialization. J Invest Dermatol 131:518–528CrossRefPubMed
4.
Zurück zum Zitat Bassino E, Gasparri F, Giannini V, Munaron L (2015) Paracrine crosstalk between human hair follicle dermal papilla cells and microvascular endothelial cells. Exp Dermatol 24:388–390CrossRefPubMed Bassino E, Gasparri F, Giannini V, Munaron L (2015) Paracrine crosstalk between human hair follicle dermal papilla cells and microvascular endothelial cells. Exp Dermatol 24:388–390CrossRefPubMed
6.
Zurück zum Zitat Butcher E (1934) The hair cycles in the albino rat. Anat Rec 61:5–19CrossRef Butcher E (1934) The hair cycles in the albino rat. Anat Rec 61:5–19CrossRef
7.
Zurück zum Zitat Castellana D, Paus R, Perez-Moreno M (2014) Macrophages contribute to the cyclic activation of adult hair follicle stem cells. PLoS Biol 12:e1002002CrossRefPubMedPubMedCentral Castellana D, Paus R, Perez-Moreno M (2014) Macrophages contribute to the cyclic activation of adult hair follicle stem cells. PLoS Biol 12:e1002002CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Chase HB, Montagna W, Malone JD (1953) Changes in the skin in relation to the hair growth cycle. Anat Rec 116:75–81CrossRefPubMed Chase HB, Montagna W, Malone JD (1953) Changes in the skin in relation to the hair growth cycle. Anat Rec 116:75–81CrossRefPubMed
9.
Zurück zum Zitat Chen CC, Plikus MV, Tang PC et al (2016) The modulatable stem cell niche: tissue interactions during hair and feather follicle regeneration. J Mol Biol 428:1423–1440CrossRefPubMed Chen CC, Plikus MV, Tang PC et al (2016) The modulatable stem cell niche: tissue interactions during hair and feather follicle regeneration. J Mol Biol 428:1423–1440CrossRefPubMed
10.
Zurück zum Zitat Donati G, Proserpio V, Lichtenberger BM et al (2014) Epidermal Wnt/β-catenin signaling regulates adipocyte differentiation via secretion of adipogenic factors. Proc Natl Acad Sci USA 111:E1501–E1509CrossRefPubMedPubMedCentral Donati G, Proserpio V, Lichtenberger BM et al (2014) Epidermal Wnt/β-catenin signaling regulates adipocyte differentiation via secretion of adipogenic factors. Proc Natl Acad Sci USA 111:E1501–E1509CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Driskell RR, Lichtenberger BM, Hoste E et al (2013) Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504:277–281CrossRefPubMedPubMedCentral Driskell RR, Lichtenberger BM, Hoste E et al (2013) Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504:277–281CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Dry FW (1926) The coat of the mouse (Mus musculus). J Genet 16:287–340CrossRef Dry FW (1926) The coat of the mouse (Mus musculus). J Genet 16:287–340CrossRef
14.
Zurück zum Zitat Ezure T, Amano S (2015) Increment of subcutaneous adipose tissue is associated with decrease of elastic fibres in the dermal layer. Exp Dermatol 24:924–929CrossRefPubMed Ezure T, Amano S (2015) Increment of subcutaneous adipose tissue is associated with decrease of elastic fibres in the dermal layer. Exp Dermatol 24:924–929CrossRefPubMed
15.
16.
Zurück zum Zitat Fu X, Fang L, Li H et al (2007) Adipose tissue extract enhances skin wound healing. Wound Repair Regen 15:540–548CrossRefPubMed Fu X, Fang L, Li H et al (2007) Adipose tissue extract enhances skin wound healing. Wound Repair Regen 15:540–548CrossRefPubMed
17.
Zurück zum Zitat Garten A, Schuster S, Kiess W (2012) The insulin-like growth factors in adipogenesis and obesity. Endocrinol Metab Clin N Am 41:283–295CrossRef Garten A, Schuster S, Kiess W (2012) The insulin-like growth factors in adipogenesis and obesity. Endocrinol Metab Clin N Am 41:283–295CrossRef
18.
Zurück zum Zitat Geyfman M, Plikus MV, Treffeisen E et al (2015) Resting no more: re-defining telogen, the maintenance stage of the hair growth cycle. Biol Rev 90:1179–1196CrossRefPubMed Geyfman M, Plikus MV, Treffeisen E et al (2015) Resting no more: re-defining telogen, the maintenance stage of the hair growth cycle. Biol Rev 90:1179–1196CrossRefPubMed
19.
Zurück zum Zitat Goldring MB, Goldring SR (1991) Cytokines and cell growth control. Crit Rev Eukaryot Gene Expr 1:301–326PubMed Goldring MB, Goldring SR (1991) Cytokines and cell growth control. Crit Rev Eukaryot Gene Expr 1:301–326PubMed
21.
Zurück zum Zitat Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321CrossRefPubMed Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321CrossRefPubMed
23.
Zurück zum Zitat Hansen LS, Coggle JE, Wells J, Charles MW (1984) The influence of the hair cycle on the thickness of mouse skin. Anat Rec 210:569–573CrossRefPubMed Hansen LS, Coggle JE, Wells J, Charles MW (1984) The influence of the hair cycle on the thickness of mouse skin. Anat Rec 210:569–573CrossRefPubMed
24.
Zurück zum Zitat Herold C, Rennekampff HO, Engeli S (2013) Apoptotic pathways in adipose tissue. Apoptosis 18:911–916CrossRefPubMed Herold C, Rennekampff HO, Engeli S (2013) Apoptotic pathways in adipose tissue. Apoptosis 18:911–916CrossRefPubMed
25.
Zurück zum Zitat Horsley V, Watt F (2017) Repeal and replace: adipocyte regeneration in wound repair. Cell Stem Cell 20:424–426CrossRefPubMed Horsley V, Watt F (2017) Repeal and replace: adipocyte regeneration in wound repair. Cell Stem Cell 20:424–426CrossRefPubMed
26.
Zurück zum Zitat Jimenez F, Poblet E, Izeta A (2015) Reflections on how wound healing-promoting effects of the hair follicle can be translated into clinical practice. Exp Dermatol 24:91–94CrossRefPubMed Jimenez F, Poblet E, Izeta A (2015) Reflections on how wound healing-promoting effects of the hair follicle can be translated into clinical practice. Exp Dermatol 24:91–94CrossRefPubMed
28.
Zurück zum Zitat Kawai K, Kageyama A, Tsumano T et al (2008) Effects of adiponectin on growth and differentiation of human keratinocytes—implication of impaired wound healing in diabetes. Biochem Biophys Res Commun 374:269–273CrossRefPubMed Kawai K, Kageyama A, Tsumano T et al (2008) Effects of adiponectin on growth and differentiation of human keratinocytes—implication of impaired wound healing in diabetes. Biochem Biophys Res Commun 374:269–273CrossRefPubMed
29.
Zurück zum Zitat Kloepper JE, Kawai K, Bertolini M et al (2013) Loss of γδ T cells results in hair cycling defects. J Invest Dermatol 133:1666–1669CrossRefPubMed Kloepper JE, Kawai K, Bertolini M et al (2013) Loss of γδ T cells results in hair cycling defects. J Invest Dermatol 133:1666–1669CrossRefPubMed
30.
Zurück zum Zitat Kroemer G, Galluzzi L, Vandenabeele P et al (2009) Classification of cell death. Cell Death Differ 16:3–11CrossRefPubMed Kroemer G, Galluzzi L, Vandenabeele P et al (2009) Classification of cell death. Cell Death Differ 16:3–11CrossRefPubMed
31.
Zurück zum Zitat Kruglikov IL, Scherer PE (2016) Dermal adipocytes and hair cycling: is spatial heterogeneity a characteristic feature of the dermal adipose tissue depot? Exp Dermatol 25:258–262CrossRefPubMedPubMedCentral Kruglikov IL, Scherer PE (2016) Dermal adipocytes and hair cycling: is spatial heterogeneity a characteristic feature of the dermal adipose tissue depot? Exp Dermatol 25:258–262CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Langan EA, Philpott MP, Kloepper JE, Paus R (2015) Human hair follicle organ culture: theory, application and perspectives. Exp Dermatol 24:903–911CrossRefPubMed Langan EA, Philpott MP, Kloepper JE, Paus R (2015) Human hair follicle organ culture: theory, application and perspectives. Exp Dermatol 24:903–911CrossRefPubMed
33.
Zurück zum Zitat Lindner G, Botchkarev V, Botchkareva NV et al (1997) Analysis of apoptosis during hair follicle regression (catagen). Am J Pathol 151:1601–1617PubMedPubMedCentral Lindner G, Botchkarev V, Botchkareva NV et al (1997) Analysis of apoptosis during hair follicle regression (catagen). Am J Pathol 151:1601–1617PubMedPubMedCentral
34.
Zurück zum Zitat Mecklenburg L, Tobin DJ, Müller-Röver S et al (2000) Active hair growth (anagen) is associated with angiogenesis. J Invest Dermatol 114:909–916CrossRefPubMed Mecklenburg L, Tobin DJ, Müller-Röver S et al (2000) Active hair growth (anagen) is associated with angiogenesis. J Invest Dermatol 114:909–916CrossRefPubMed
35.
Zurück zum Zitat Müller-Röver S, Handjiski B, van der Veen C et al (2001) A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol 117:3–15CrossRefPubMed Müller-Röver S, Handjiski B, van der Veen C et al (2001) A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol 117:3–15CrossRefPubMed
36.
Zurück zum Zitat Ohnemus U, Uenalan M, Inzunza J et al (2006) The hair follicle as an estrogen target and source. Endocr Rev 27:677–706CrossRefPubMed Ohnemus U, Uenalan M, Inzunza J et al (2006) The hair follicle as an estrogen target and source. Endocr Rev 27:677–706CrossRefPubMed
37.
Zurück zum Zitat Paus R, Stenn KS, Link RE (1990) Telogen skin contains an inhibitor of hair growth. Br J Dermatol 122:777–784CrossRefPubMed Paus R, Stenn KS, Link RE (1990) Telogen skin contains an inhibitor of hair growth. Br J Dermatol 122:777–784CrossRefPubMed
38.
Zurück zum Zitat Paus R, Handjiski B, Czarnetzki BM, Eichmuller S (1994) A murine model for inducing and manipulating hair follicle regression (catagen): effects of dexamethasone and cyclosporin A. J Invest Dermatol 103:143–147CrossRefPubMed Paus R, Handjiski B, Czarnetzki BM, Eichmuller S (1994) A murine model for inducing and manipulating hair follicle regression (catagen): effects of dexamethasone and cyclosporin A. J Invest Dermatol 103:143–147CrossRefPubMed
39.
Zurück zum Zitat Paus R, Foitzik K (2004) In search of the “hair cycle clock”: a guided tour. Differentiation 72:489–511CrossRefPubMed Paus R, Foitzik K (2004) In search of the “hair cycle clock”: a guided tour. Differentiation 72:489–511CrossRefPubMed
40.
Zurück zum Zitat Paus R, Maurer M, Slominski A, Czarnetzki BM (1994) Mast cell involvement in murine hair growth. Dev Biol 163:230–240CrossRefPubMed Paus R, Maurer M, Slominski A, Czarnetzki BM (1994) Mast cell involvement in murine hair growth. Dev Biol 163:230–240CrossRefPubMed
41.
Zurück zum Zitat Paus R, van der Veen C, Eichmüller S et al (1998) Generation and cyclic remodeling of the hair follicle immune system in mice. J Invest Dermatol 111:7–18CrossRefPubMed Paus R, van der Veen C, Eichmüller S et al (1998) Generation and cyclic remodeling of the hair follicle immune system in mice. J Invest Dermatol 111:7–18CrossRefPubMed
42.
Zurück zum Zitat Plikus MV, Chuong CM (2014) Macroenvironmental regulation of hair cycling and collective regenerative behavior. Cold Spring Harb Perspect Med 4:A015198CrossRefPubMedPubMedCentral Plikus MV, Chuong CM (2014) Macroenvironmental regulation of hair cycling and collective regenerative behavior. Cold Spring Harb Perspect Med 4:A015198CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Plikus MV, Guerrero-Juarez CF, Ito M et al (2017) Regeneration of fat cells from myofibroblasts during wound healing. Science 355(6326):748–752CrossRefPubMedPubMedCentral Plikus MV, Guerrero-Juarez CF, Ito M et al (2017) Regeneration of fat cells from myofibroblasts during wound healing. Science 355(6326):748–752CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Plikus MV, Mayer JA, de la Cruz D et al (2008) Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 451:340–344CrossRefPubMedPubMedCentral Plikus MV, Mayer JA, de la Cruz D et al (2008) Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 451:340–344CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Ramot Y, Mastrofrancesco A, Camera E et al (2015) The role of PPARγ-mediated signalling in skin biology and pathology: new targets and opportunities for clinical dermatology. Exp Dermatol 24:245–251CrossRefPubMed Ramot Y, Mastrofrancesco A, Camera E et al (2015) The role of PPARγ-mediated signalling in skin biology and pathology: new targets and opportunities for clinical dermatology. Exp Dermatol 24:245–251CrossRefPubMed
46.
Zurück zum Zitat Rezza A, Sennett R, Tanguy M et al (2015) PDGF signalling in the dermis and in dermal condensates is dispensable for hair follicle induction and formation. Exp Dermatol 24:468–470CrossRefPubMedPubMedCentral Rezza A, Sennett R, Tanguy M et al (2015) PDGF signalling in the dermis and in dermal condensates is dispensable for hair follicle induction and formation. Exp Dermatol 24:468–470CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Rivera-Gonzalez GC, Shook BA, Andrae J et al (2016) Skin adipocyte stem cell self-renewal is regulated by a PDGFA/AKT-signaling axis. Cell Stem Cell 19:738–751CrossRefPubMedPubMedCentral Rivera-Gonzalez GC, Shook BA, Andrae J et al (2016) Skin adipocyte stem cell self-renewal is regulated by a PDGFA/AKT-signaling axis. Cell Stem Cell 19:738–751CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Rodeheffer MS, Birsoy K, Friedman JM (2008) Identification of white adipocyte progenitor cells in vivo. Cell 135:240–249CrossRefPubMed Rodeheffer MS, Birsoy K, Friedman JM (2008) Identification of white adipocyte progenitor cells in vivo. Cell 135:240–249CrossRefPubMed
49.
Zurück zum Zitat Rosen E, Spiegelman B (2000) Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol 16:145–171CrossRefPubMed Rosen E, Spiegelman B (2000) Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol 16:145–171CrossRefPubMed
52.
54.
Zurück zum Zitat Schneider MR (2014) Coming home at last: dermal white adipose tissue. Exp Dermatol 23:634–635CrossRefPubMed Schneider MR (2014) Coming home at last: dermal white adipose tissue. Exp Dermatol 23:634–635CrossRefPubMed
55.
Zurück zum Zitat Schneider MR, Schmidt-Ullrich R, Paus R (2009) The hair follicle as a dynamic miniorgan. Curr Biol 19:R132-142CrossRef Schneider MR, Schmidt-Ullrich R, Paus R (2009) The hair follicle as a dynamic miniorgan. Curr Biol 19:R132-142CrossRef
56.
Zurück zum Zitat Seo G, Oh E, Yun M et al (2015) Adipose-derived stem cell conditioned medium accelerates keratinocyte differentiation via the upregulation of miR-24. Exp Dermatol 24:792–793CrossRefPubMed Seo G, Oh E, Yun M et al (2015) Adipose-derived stem cell conditioned medium accelerates keratinocyte differentiation via the upregulation of miR-24. Exp Dermatol 24:792–793CrossRefPubMed
57.
Zurück zum Zitat Shook B, Rivera Gonzalez G, Ebmeier S et al (2016) The role of adipocytes in tissue regeneration and stem cell niches. Annu Rev Cell Dev Biol 32:609–631CrossRefPubMedPubMedCentral Shook B, Rivera Gonzalez G, Ebmeier S et al (2016) The role of adipocytes in tissue regeneration and stem cell niches. Annu Rev Cell Dev Biol 32:609–631CrossRefPubMedPubMedCentral
60.
62.
Zurück zum Zitat Tao H, Umek RM (2000) C/EBPa is required to maintain postmitotic growth arrest in adipocytes. DNA Cell Biol 19:9–18CrossRefPubMed Tao H, Umek RM (2000) C/EBPa is required to maintain postmitotic growth arrest in adipocytes. DNA Cell Biol 19:9–18CrossRefPubMed
64.
Zurück zum Zitat Weger N, Schlake T (2005) IGF-I signalling controls the hair growth cycle and the differentiation of hair shafts. J Invest Dermatol 125:873–882CrossRefPubMed Weger N, Schlake T (2005) IGF-I signalling controls the hair growth cycle and the differentiation of hair shafts. J Invest Dermatol 125:873–882CrossRefPubMed
65.
Zurück zum Zitat Wojciechowicz K, Gledhill K, Ambler C et al (2013) Development of the mouse dermal adipose layer occurs independently of subcutaneous adipose tissue and is marked by restricted early expression of FABP4. PLoS One 8:e59811CrossRefPubMedPubMedCentral Wojciechowicz K, Gledhill K, Ambler C et al (2013) Development of the mouse dermal adipose layer occurs independently of subcutaneous adipose tissue and is marked by restricted early expression of FABP4. PLoS One 8:e59811CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Won CH, Yoo HG, Park KY et al (2012) Hair growth-promoting effects of adiponectin in vitro. J Invest Dermatol 132:2849–2851CrossRefPubMed Won CH, Yoo HG, Park KY et al (2012) Hair growth-promoting effects of adiponectin in vitro. J Invest Dermatol 132:2849–2851CrossRefPubMed
67.
Zurück zum Zitat Yang C-C, Sheu H-M, Chung P-L et al (2015) Leptin of dermal adipose tissue is differentially expressed during the hair cycle and contributes to adipocyte-mediated growth inhibition of anagen-phase vibrissa hair. Exp Dermatol 24:57–60CrossRefPubMed Yang C-C, Sheu H-M, Chung P-L et al (2015) Leptin of dermal adipose tissue is differentially expressed during the hair cycle and contributes to adipocyte-mediated growth inhibition of anagen-phase vibrissa hair. Exp Dermatol 24:57–60CrossRefPubMed
69.
Zurück zum Zitat Zhang B, Tsai PC, Gonzalez-Celeiro M et al (2016) Hair follicles’ transit-amplifying cells govern concurrent dermal adipocyte production through sonic hedgehog. Genes Dev 30:2325–2338CrossRefPubMedPubMedCentral Zhang B, Tsai PC, Gonzalez-Celeiro M et al (2016) Hair follicles’ transit-amplifying cells govern concurrent dermal adipocyte production through sonic hedgehog. Genes Dev 30:2325–2338CrossRefPubMedPubMedCentral
Metadaten
Titel
Dermal white adipose tissue undergoes major morphological changes during the spontaneous and induced murine hair follicle cycling: a reappraisal
verfasst von
April R. Foster
Carina Nicu
Marlon R. Schneider
Eleanor Hinde
Ralf Paus
Publikationsdatum
27.04.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Archives of Dermatological Research / Ausgabe 5/2018
Print ISSN: 0340-3696
Elektronische ISSN: 1432-069X
DOI
https://doi.org/10.1007/s00403-018-1831-y

Weitere Artikel der Ausgabe 5/2018

Archives of Dermatological Research 5/2018 Zur Ausgabe

Leitlinien kompakt für die Dermatologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Dermatologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.