Skip to main content
Erschienen in: Sleep and Breathing 4/2022

07.02.2022 | Sleep Breathing Physiology and Disorders • Original Article

Detecting obstructive sleep apnea by craniofacial image–based deep learning

verfasst von: Shuai He, Hang Su, Yanru Li, Wen Xu, Xingjun Wang, Demin Han

Erschienen in: Sleep and Breathing | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten

Abstract

Study objectives

This study aimed to develop a deep learning–based model to detect obstructive sleep apnea (OSA) using craniofacial photographs.

Methods

Participants referred for polysomnography (PSG) were recruited consecutively and randomly divided into the training, validation, and test groups for model development and evaluation. Craniofacial photographs were taken from five different angles (front, right 90° profile, left 90° profile, right 45° profile, and left 45° profile) and inputted to the convolutional neural networks. The neural networks extracted features from photographs and outputted the probabilities of the presence of the disease. Sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were calculated using PSG diagnosis as the reference standard. These analyses were repeated using two apnea–hypopnea index thresholds (≥ 5 and ≥ 15events/h).

Results

A total of 393 participants were enrolled. Using the operating point with maximum sum of sensitivity and specificity, the model of the photographs exhibited an AUC of 0.916 (95% confidence interval [CI], 0.847–0.960) with a sensitivity of 0.95 and a specificity of 0.80 at an AHI threshold of 5 events/h; an AUC of 0.812 (95% CI, 0.729–0.878) with a sensitivity of 0.91 and a specificity of 0.73 at an AHI threshold of 15 events/h.

Conclusions

The results suggest that combining craniofacial photographs and deep learning techniques can help detect OSA automatically. The model may have potential utility as a tool to assess OSA probability in clinics or screen for OSA in the community.
Literatur
1.
Zurück zum Zitat Kapur VK, Auckley DH, Chowdhuri S et al (2017) Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American Academy of Sleep Medicine clinical practice guideline. J Clin Sleep Med 13(3):479–504 CrossRefPubMedPubMedCentral Kapur VK, Auckley DH, Chowdhuri S et al (2017) Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American Academy of Sleep Medicine clinical practice guideline. J Clin Sleep Med 13(3):479–504 CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Maniaci A, Iannella G, Cocuzza S et al (2021) Oxidative stress and inflammation biomarker expression in obstructive sleep apnea patients. J Clin Med 10(2):277 CrossRefPubMedCentral Maniaci A, Iannella G, Cocuzza S et al (2021) Oxidative stress and inflammation biomarker expression in obstructive sleep apnea patients. J Clin Med 10(2):277 CrossRefPubMedCentral
3.
Zurück zum Zitat Iannella G, Magliulo G, Maniaci A et al (2021) Olfactory function in patients with obstructive sleep apnea: a meta-analysis study. Eur Arch Otorhinolaryngol 278(3):883–891 CrossRefPubMed Iannella G, Magliulo G, Maniaci A et al (2021) Olfactory function in patients with obstructive sleep apnea: a meta-analysis study. Eur Arch Otorhinolaryngol 278(3):883–891 CrossRefPubMed
4.
Zurück zum Zitat Lévy P, Kohler M, Mcnicholas WT et al (2015) Obstructive sleep apnoea syndrome. Nat Rev Dis Primers 1:15015 CrossRefPubMed Lévy P, Kohler M, Mcnicholas WT et al (2015) Obstructive sleep apnoea syndrome. Nat Rev Dis Primers 1:15015 CrossRefPubMed
5.
Zurück zum Zitat Stepnowsky C, Sarmiento KF, Bujanover S et al (2019) Comorbidities, health-related quality of life, and work productivity among people with obstructive sleep apnea with excessive sleepiness: findings from the 2016 US National Health and Wellness Survey. J Clin Sleep Med 15(2):235–243 CrossRefPubMedPubMedCentral Stepnowsky C, Sarmiento KF, Bujanover S et al (2019) Comorbidities, health-related quality of life, and work productivity among people with obstructive sleep apnea with excessive sleepiness: findings from the 2016 US National Health and Wellness Survey. J Clin Sleep Med 15(2):235–243 CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Benjafield AV, Ayas NT, Eastwood PR et al (2019) Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med 7(8):687–698 CrossRefPubMedPubMedCentral Benjafield AV, Ayas NT, Eastwood PR et al (2019) Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med 7(8):687–698 CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Rowley JA, Aboussouan LS, Badr MS (2000) The use of clinical prediction formulas in the evaluation of obstructive sleep apnea. Sleep 23(7):929–938 CrossRefPubMed Rowley JA, Aboussouan LS, Badr MS (2000) The use of clinical prediction formulas in the evaluation of obstructive sleep apnea. Sleep 23(7):929–938 CrossRefPubMed
8.
Zurück zum Zitat Tsai WH, Remmers JE, Brant R et al (2003) A decision rule for diagnostic testing in obstructive sleep apnea. Am J Respir Crit Care Med 167(10):1427–1432 CrossRefPubMed Tsai WH, Remmers JE, Brant R et al (2003) A decision rule for diagnostic testing in obstructive sleep apnea. Am J Respir Crit Care Med 167(10):1427–1432 CrossRefPubMed
9.
Zurück zum Zitat Myers KA, Mrkobrada M, Simel DL (2013) Does this patient have obstructive sleep apnea?: The Rational Clinical Examination systematic review. JAMA 310(7):731–741 CrossRefPubMed Myers KA, Mrkobrada M, Simel DL (2013) Does this patient have obstructive sleep apnea?: The Rational Clinical Examination systematic review. JAMA 310(7):731–741 CrossRefPubMed
10.
Zurück zum Zitat Lee RWW, Chan ASL, Grunstein RR et al (2009) Craniofacial phenotyping in obstructive sleep apnea–a novel quantitative photographic approach. Sleep 32(1):37–45 PubMedPubMedCentral Lee RWW, Chan ASL, Grunstein RR et al (2009) Craniofacial phenotyping in obstructive sleep apnea–a novel quantitative photographic approach. Sleep 32(1):37–45 PubMedPubMedCentral
11.
Zurück zum Zitat Lee RWW, Petocz P, Prvan T et al (2009) Prediction of obstructive sleep apnea with craniofacial photographic analysis. Sleep 32(1):46–52 PubMedPubMedCentral Lee RWW, Petocz P, Prvan T et al (2009) Prediction of obstructive sleep apnea with craniofacial photographic analysis. Sleep 32(1):46–52 PubMedPubMedCentral
12.
Zurück zum Zitat Topol EJ (2019) High-performance medicine: the convergence of human and artificial intelligence. Nat Med 25(1):44–56 CrossRefPubMed Topol EJ (2019) High-performance medicine: the convergence of human and artificial intelligence. Nat Med 25(1):44–56 CrossRefPubMed
13.
14.
Zurück zum Zitat Lakhani P, Sundaram B (2017) Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiol 284(2):574–582 CrossRef Lakhani P, Sundaram B (2017) Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiol 284(2):574–582 CrossRef
15.
Zurück zum Zitat Yasaka K, Akai H, Abe O et al (2018) Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study. Radiol 286(3):887–896 CrossRef Yasaka K, Akai H, Abe O et al (2018) Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study. Radiol 286(3):887–896 CrossRef
16.
Zurück zum Zitat Haenssle HA, Fink C, Schneiderbauer R et al (2018) Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol 29(8):1836–1842 CrossRefPubMed Haenssle HA, Fink C, Schneiderbauer R et al (2018) Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol 29(8):1836–1842 CrossRefPubMed
17.
Zurück zum Zitat Tan M, Le QV. EfficientNet: rethinking model scaling for convolutional neural networks. International Conference on Machine Learning (ICML). ArXiv, abs/1905.11946, 2019. Tan M, Le QV. EfficientNet: rethinking model scaling for convolutional neural networks. International Conference on Machine Learning (ICML). ArXiv, abs/1905.11946, 2019.
18.
Zurück zum Zitat Berry RB, Budhiraja R, Gottlieb DJ et al (2012) Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events. J Clin Sleep Med 8(5):597–619 CrossRefPubMedPubMedCentral Berry RB, Budhiraja R, Gottlieb DJ et al (2012) Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events. J Clin Sleep Med 8(5):597–619 CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Deng J, Guo J, Zhou Y, et al. RetinaFace: single-stage dense face localisation in the wild. ArXiv, abs/1905.00641, 2019. Deng J, Guo J, Zhou Y, et al. RetinaFace: single-stage dense face localisation in the wild. ArXiv, abs/1905.00641, 2019.
20.
Zurück zum Zitat Yong H, Huang J, Hua X, et al. Gradient centralization: a new optimization technique for deep neural networks. ArXiv, abs/2004.01461, 2020. Yong H, Huang J, Hua X, et al. Gradient centralization: a new optimization technique for deep neural networks. ArXiv, abs/2004.01461, 2020.
21.
Zurück zum Zitat Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision. 2016 IEEE Conference on Computer Vision an Pattern Recognition (CVPR). IEEE,2016: 2818 - 2826. Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision. 2016 IEEE Conference on Computer Vision an Pattern Recognition (CVPR). IEEE,2016: 2818 - 2826.
22.
Zurück zum Zitat Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network. ArXiv, abs/1503.02531, 2015. Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network. ArXiv, abs/1503.02531, 2015.
23.
Zurück zum Zitat Guo L, Qi M, Finley T, et al. LightGBM: a highly efficient gradient boosting decision tree. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, CA, USA: ACM: 3149 - 3157. Guo L, Qi M, Finley T, et al. LightGBM: a highly efficient gradient boosting decision tree. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, CA, USA: ACM: 3149 - 3157.
24.
25.
Zurück zum Zitat Sutherland K, Schwab RJ, Maislin G et al (2014) Facial phenotyping by quantitative photography reflects craniofacial morphology measured on magnetic resonance imaging in Icelandic sleep apnea patients. Sleep 37(5):959–968 CrossRefPubMedPubMedCentral Sutherland K, Schwab RJ, Maislin G et al (2014) Facial phenotyping by quantitative photography reflects craniofacial morphology measured on magnetic resonance imaging in Icelandic sleep apnea patients. Sleep 37(5):959–968 CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Esteva A, Robicquet A, Ramsundar B et al (2019) A guide to deep learning in healthcare. Nat Med 25(1):24–29 CrossRefPubMed Esteva A, Robicquet A, Ramsundar B et al (2019) A guide to deep learning in healthcare. Nat Med 25(1):24–29 CrossRefPubMed
27.
Zurück zum Zitat Lin S, Li Z, Fu B, et al. Feasibility of using deep learning to detect coronary artery disease based on facial photo. European Heart Journal. 2020; ehaa640. Lin S, Li Z, Fu B, et al. Feasibility of using deep learning to detect coronary artery disease based on facial photo. European Heart Journal. 2020; ehaa640.
28.
Zurück zum Zitat Jin B, Qu Y, Zhang L et al (2020) Diagnosing Parkinson disease through facial expression recognition: video analysis. Journal of Medical Internet Research 22(7):e18697 CrossRefPubMedPubMedCentral Jin B, Qu Y, Zhang L et al (2020) Diagnosing Parkinson disease through facial expression recognition: video analysis. Journal of Medical Internet Research 22(7):e18697 CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Liang B, Yang N, He G et al (2020) Identification of the facial features of patients with cancer: a deep learning–based pilot study. J Med Internet Res 22(4):e17234 CrossRefPubMedPubMedCentral Liang B, Yang N, He G et al (2020) Identification of the facial features of patients with cancer: a deep learning–based pilot study. J Med Internet Res 22(4):e17234 CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Gurovich Y, Hanani Y, Bar O et al (2019) Identifying facial phenotypes of genetic disorders using deep learning. Nat Med 25(1):60–64 CrossRefPubMed Gurovich Y, Hanani Y, Bar O et al (2019) Identifying facial phenotypes of genetic disorders using deep learning. Nat Med 25(1):60–64 CrossRefPubMed
31.
Zurück zum Zitat Kuenzi BM, Park J, Fong SH et al (2020) Predicting drug response and synergy using a deep learning model of human. Cancer Cells 38(5):672–684 CrossRef Kuenzi BM, Park J, Fong SH et al (2020) Predicting drug response and synergy using a deep learning model of human. Cancer Cells 38(5):672–684 CrossRef
32.
Zurück zum Zitat Balaei AT, Sutherland K, Cistulli PA, Automatic detection of obstructive sleep apnea using facial images et al (2017) IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne. VIC 2017:215–218 Balaei AT, Sutherland K, Cistulli PA, Automatic detection of obstructive sleep apnea using facial images et al (2017) IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne. VIC 2017:215–218
33.
Zurück zum Zitat Islam SMS, Mahmood H, Al-Jumaily AA, et al. Deep learning of facial depth maps for obstructive sleep apnea prediction. 2018 International Conference on Machine Learning and Data Engineering (iCMLDE), Sydney, Australia. 2018; 154 - 157. Islam SMS, Mahmood H, Al-Jumaily AA, et al. Deep learning of facial depth maps for obstructive sleep apnea prediction. 2018 International Conference on Machine Learning and Data Engineering (iCMLDE), Sydney, Australia. 2018; 154 - 157.
34.
Zurück zum Zitat Espinoza-Cuadros F, Fernández-Pozo R, Toledano DT et al (2015) Speech signal and facial image processing for obstructive sleep apnea assessment. Comput Math Methods Med 2015:489761 CrossRefPubMedPubMedCentral Espinoza-Cuadros F, Fernández-Pozo R, Toledano DT et al (2015) Speech signal and facial image processing for obstructive sleep apnea assessment. Comput Math Methods Med 2015:489761 CrossRefPubMedPubMedCentral
Metadaten
Titel
Detecting obstructive sleep apnea by craniofacial image–based deep learning
verfasst von
Shuai He
Hang Su
Yanru Li
Wen Xu
Xingjun Wang
Demin Han
Publikationsdatum
07.02.2022
Verlag
Springer International Publishing
Erschienen in
Sleep and Breathing / Ausgabe 4/2022
Print ISSN: 1520-9512
Elektronische ISSN: 1522-1709
DOI
https://doi.org/10.1007/s11325-022-02571-9

Weitere Artikel der Ausgabe 4/2022

Sleep and Breathing 4/2022 Zur Ausgabe

Sleep Breathing Physiology and Disorders • Original Article

Obstructive sleep apnea is associated with cognitive impairment in minor ischemic stroke

Update Innere Medizin

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.