Skip to main content
main-content

20.06.2017 | Original Article | Ausgabe 8/2017

International Journal of Computer Assisted Radiology and Surgery 8/2017

Detection and grading of prostate cancer using temporal enhanced ultrasound: combining deep neural networks and tissue mimicking simulations

Zeitschrift:
International Journal of Computer Assisted Radiology and Surgery > Ausgabe 8/2017
Autoren:
Shekoofeh Azizi, Sharareh Bayat, Pingkun Yan, Amir Tahmasebi, Guy Nir, Jin Tae Kwak, Sheng Xu, Storey Wilson, Kenneth A. Iczkowski, M. Scott Lucia, Larry Goldenberg, Septimiu E. Salcudean, Peter A. Pinto, Bradford Wood, Purang Abolmaesumi, Parvin Mousavi

Abstract

Purpose 

Temporal Enhanced Ultrasound (TeUS) has been proposed as a new paradigm for tissue characterization based on a sequence of ultrasound radio frequency (RF) data. We previously used TeUS to successfully address the problem of prostate cancer detection in the fusion biopsies.

Methods 

In this paper, we use TeUS to address the problem of grading prostate cancer in a clinical study of 197 biopsy cores from 132 patients. Our method involves capturing high-level latent features of TeUS with a deep learning approach followed by distribution learning to cluster aggressive cancer in a biopsy core. In this hypothesis-generating study, we utilize deep learning based feature visualization as a means to obtain insight into the physical phenomenon governing the interaction of temporal ultrasound with tissue.

Results 

Based on the evidence derived from our feature visualization, and the structure of tissue from digital pathology, we build a simulation framework for studying the physical phenomenon underlying TeUS-based tissue characterization.

Conclusion 

Results from simulation and feature visualization corroborated with the hypothesis that micro-vibrations of tissue microstructure, captured by low-frequency spectral features of TeUS, can be used for detection of prostate cancer.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag als Mediziner

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Alle e.Med Abos bis 30. April 2021 zum halben Preis!

Jetzt e.Med zum Sonderpreis bestellen!

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 8/2017

International Journal of Computer Assisted Radiology and Surgery 8/2017 Zur Ausgabe
  1. Sie können e.Med Chirurgie 14 Tage kostenlos testen (keine Print-Zeitschrift enthalten). Der Test läuft automatisch und formlos aus. Es kann nur einmal getestet werden.

  2. Sie können e.Med Radiologie 14 Tage kostenlos testen (keine Print-Zeitschrift enthalten). Der Test läuft automatisch und formlos aus. Es kann nur einmal getestet werden.

Neu im Fachgebiet Radiologie

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Radiologie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise