Skip to main content
Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine 4/2019

15.02.2019 | Research Article

Detection of axonal degeneration in a mouse model of Huntington’s disease: comparison between diffusion tensor imaging and anomalous diffusion metrics

verfasst von: Rodolfo G. Gatto, Allen Q. Ye, Luis Colon-Perez, Thomas H. Mareci, Anna Lysakowski, Steven D. Price, Scott T. Brady, Muge Karaman, Gerardo Morfini, Richard L. Magin

Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Abstract

Objective

The goal of this work is to study the changes in white matter integrity in R6/2, a well-established animal model of Huntington’s disease (HD) that are captured by ex vivo diffusion imaging (DTI) using a high field MRI (17.6 T).

Materials and methods

DTI and continuous time random walk (CTRW) models were used to fit changes in the diffusion-weighted signal intensity in the corpus callosum of controls and in R6/2 mice.

Results

A significant 13% decrease in fractional anisotropy, a 7% increase in axial diffusion, and a 33% increase in radial diffusion were observed between R6/2 and control mice. No change was observed in the CTRW beta parameter, but a significant decrease in the alpha parameter (− 21%) was measured. Histological analysis of the corpus callosum showed a decrease in axonal organization, myelin alterations, and astrogliosis. Electron microscopy studies demonstrated ultrastructural changes in degenerating axons, such as an increase in tortuosity in the R6/2 mice.

Conclusions

DTI and CTRW diffusion models display quantitative changes associated with the microstructural alterations observed in the corpus callosum of the R6/2 mice. The observed increase in the diffusivity and decrease in the alpha CTRW parameter providing support for the use of these diffusion models for non-invasive detection of white matter alterations in HD.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
2.
Zurück zum Zitat Pringsheim T, Wiltshire K, Day L, Dykeman J, Steeves T, Jette N (2012) The incidence and prevalence of Huntington’s disease: a systematic review and meta-analysis. Mov Disord 27(9):1083–1091PubMedCrossRef Pringsheim T, Wiltshire K, Day L, Dykeman J, Steeves T, Jette N (2012) The incidence and prevalence of Huntington’s disease: a systematic review and meta-analysis. Mov Disord 27(9):1083–1091PubMedCrossRef
4.
Zurück zum Zitat Han I, You Y, Kordower JH, Brady ST, Morfini GA (2010) Differential vulnerability of neurons in Huntington’s disease: the role of cell type-specific features. J Neurochem 113(5):1073–1091PubMedPubMedCentral Han I, You Y, Kordower JH, Brady ST, Morfini GA (2010) Differential vulnerability of neurons in Huntington’s disease: the role of cell type-specific features. J Neurochem 113(5):1073–1091PubMedPubMedCentral
5.
Zurück zum Zitat Perez-Navarro E, Canals JM, Gines S, Alberch J (2006) Cellular and molecular mechanisms involved in the selective vulnerability of striatal projection neurons in Huntington’s disease. Histol Histopathol 21(11):1217–1232PubMed Perez-Navarro E, Canals JM, Gines S, Alberch J (2006) Cellular and molecular mechanisms involved in the selective vulnerability of striatal projection neurons in Huntington’s disease. Histol Histopathol 21(11):1217–1232PubMed
6.
Zurück zum Zitat Pouladi MA, Morton AJ, Hayden MR (2013) Choosing an animal model for the study of Huntington’s disease. Nat Rev Neurosci 14(10):708–721PubMedCrossRef Pouladi MA, Morton AJ, Hayden MR (2013) Choosing an animal model for the study of Huntington’s disease. Nat Rev Neurosci 14(10):708–721PubMedCrossRef
7.
Zurück zum Zitat Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87(3):493–506PubMedCrossRef Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87(3):493–506PubMedCrossRef
8.
Zurück zum Zitat Menalled L, El-Khodor BF, Patry M, Suarez-Farinas M, Orenstein SJ, Zahasky B, Leahy C, Wheeler V, Yang XW, MacDonald M, Morton AJ, Bates G, Leeds J, Park L, Howland D, Signer E, Tobin A, Brunner D (2009) Systematic behavioral evaluation of Huntington’s disease transgenic and knock-in mouse models. Neurobiol Dis 35(3):319–336PubMedPubMedCentralCrossRef Menalled L, El-Khodor BF, Patry M, Suarez-Farinas M, Orenstein SJ, Zahasky B, Leahy C, Wheeler V, Yang XW, MacDonald M, Morton AJ, Bates G, Leeds J, Park L, Howland D, Signer E, Tobin A, Brunner D (2009) Systematic behavioral evaluation of Huntington’s disease transgenic and knock-in mouse models. Neurobiol Dis 35(3):319–336PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Ramaswamy S, McBride JL, Kordower JH (2007) Animal models of Huntington’s disease. ILAR J 48(4):356–373PubMedCrossRef Ramaswamy S, McBride JL, Kordower JH (2007) Animal models of Huntington’s disease. ILAR J 48(4):356–373PubMedCrossRef
10.
Zurück zum Zitat Gatto RG, Chu Y, Ye AQ, Price SD, Tavassoli E, Buenaventura A, Brady ST, Magin RL, Kordower JH, Morfini GA (2015) Analysis of YFP(J16)-R6/2 reporter mice and postmortem brains reveals early pathology and increased vulnerability of callosal axons in Huntington’s disease. Hum Mol Genet 24(18):5285–5298PubMedPubMedCentralCrossRef Gatto RG, Chu Y, Ye AQ, Price SD, Tavassoli E, Buenaventura A, Brady ST, Magin RL, Kordower JH, Morfini GA (2015) Analysis of YFP(J16)-R6/2 reporter mice and postmortem brains reveals early pathology and increased vulnerability of callosal axons in Huntington’s disease. Hum Mol Genet 24(18):5285–5298PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Rosas HD, Lee SY, Bender AC, Zaleta AK, Vangel M, Yu P, Fischl B, Pappu V, Onorato C, Cha JH, Salat DH, Hersch SM (2010) Altered white matter microstructure in the corpus callosum in Huntington’s disease: implications for cortical “disconnection”. NeuroImage 49(4):2995–3004PubMedCrossRef Rosas HD, Lee SY, Bender AC, Zaleta AK, Vangel M, Yu P, Fischl B, Pappu V, Onorato C, Cha JH, Salat DH, Hersch SM (2010) Altered white matter microstructure in the corpus callosum in Huntington’s disease: implications for cortical “disconnection”. NeuroImage 49(4):2995–3004PubMedCrossRef
12.
Zurück zum Zitat Poudel GR, Stout JC, Dominguez DJ, Churchyard A, Chua P, Egan GF, Georgiou-Karistianis N (2015) Longitudinal change in white matter microstructure in Huntington’s disease: the IMAGE-HD study. Neurobiol Dis 74:406–412PubMedCrossRef Poudel GR, Stout JC, Dominguez DJ, Churchyard A, Chua P, Egan GF, Georgiou-Karistianis N (2015) Longitudinal change in white matter microstructure in Huntington’s disease: the IMAGE-HD study. Neurobiol Dis 74:406–412PubMedCrossRef
13.
Zurück zum Zitat Poudel GR, Stout JC, Dominguez DJ, Salmon L, Churchyard A, Chua P, Georgiou-Karistianis N, Egan GF (2014) White matter connectivity reflects clinical and cognitive status in Huntington’s disease. Neurobiol Dis 65:180–187PubMedCrossRef Poudel GR, Stout JC, Dominguez DJ, Salmon L, Churchyard A, Chua P, Georgiou-Karistianis N, Egan GF (2014) White matter connectivity reflects clinical and cognitive status in Huntington’s disease. Neurobiol Dis 65:180–187PubMedCrossRef
14.
Zurück zum Zitat Rosas HD, Tuch DS, Hevelone ND, Zaleta AK, Vangel M, Hersch SM, Salat DH (2006) Diffusion tensor imaging in presymptomatic and early Huntington’s disease: selective white matter pathology and its relationship to clinical measures. Mov Disord 21(9):1317–1325PubMedCrossRef Rosas HD, Tuch DS, Hevelone ND, Zaleta AK, Vangel M, Hersch SM, Salat DH (2006) Diffusion tensor imaging in presymptomatic and early Huntington’s disease: selective white matter pathology and its relationship to clinical measures. Mov Disord 21(9):1317–1325PubMedCrossRef
15.
Zurück zum Zitat Le Bihan D (2013) Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure. Radiology 268(2):318–322PubMedCrossRef Le Bihan D (2013) Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure. Radiology 268(2):318–322PubMedCrossRef
16.
Zurück zum Zitat Tabesh A, Jensen JH, Ardekani BA, Helpern JA (2011) Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med 65(3):823–836PubMedCrossRef Tabesh A, Jensen JH, Ardekani BA, Helpern JA (2011) Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med 65(3):823–836PubMedCrossRef
17.
Zurück zum Zitat Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC (2012) NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61(4):1000–1016PubMedCrossRef Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC (2012) NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61(4):1000–1016PubMedCrossRef
18.
Zurück zum Zitat Ingo C, Magin RL, Colon-Perez L, Triplett W, Mareci TH (2014) On random walks and entropy in diffusion-weighted magnetic resonance imaging studies of neural tissue. Magn Reson Med 71(2):617–627PubMedPubMedCentralCrossRef Ingo C, Magin RL, Colon-Perez L, Triplett W, Mareci TH (2014) On random walks and entropy in diffusion-weighted magnetic resonance imaging studies of neural tissue. Magn Reson Med 71(2):617–627PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Yu Q, Reutens D, O’Brien K, Vegh V (2016) Tissue microstructure features derived from anomalous diffusion measurements in magnetic resonance imaging. Hum Brain Mapp 38(2):1068–1081PubMedCrossRef Yu Q, Reutens D, O’Brien K, Vegh V (2016) Tissue microstructure features derived from anomalous diffusion measurements in magnetic resonance imaging. Hum Brain Mapp 38(2):1068–1081PubMedCrossRef
20.
Zurück zum Zitat Karaman MM, Sui Y, Wang H, Magin RL, Li Y, Zhou XJ (2016) Differentiating low- and high-grade pediatric brain tumors using a continuous-time random-walk diffusion model at high b-values. Magn Reson Med 76(4):1149–1157PubMedCrossRef Karaman MM, Sui Y, Wang H, Magin RL, Li Y, Zhou XJ (2016) Differentiating low- and high-grade pediatric brain tumors using a continuous-time random-walk diffusion model at high b-values. Magn Reson Med 76(4):1149–1157PubMedCrossRef
21.
Zurück zum Zitat Xu B, Su L, Wang Z, Fan Y, Gong G, Zhu W, Gao P, Gao JH (2017) Anomalous diffusion in cerebral glioma assessed using a fractional motion model. Magn Reson Med 78(5):1944–1949PubMedCrossRef Xu B, Su L, Wang Z, Fan Y, Gong G, Zhu W, Gao P, Gao JH (2017) Anomalous diffusion in cerebral glioma assessed using a fractional motion model. Magn Reson Med 78(5):1944–1949PubMedCrossRef
22.
Zurück zum Zitat Karaman MM, Wang H, Sui Y, Engelhard HH, Li Y, Zhou XJ (2016) A fractional motion diffusion model for grading pediatric brain tumors. NeuroImage Clinical 12:707–714PubMedPubMedCentralCrossRef Karaman MM, Wang H, Sui Y, Engelhard HH, Li Y, Zhou XJ (2016) A fractional motion diffusion model for grading pediatric brain tumors. NeuroImage Clinical 12:707–714PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Gatto RG, Li W, Magin RL (2018) Diffusion tensor imaging identifies presymptomatic axonal degeneration in the spinal cord of ALS mice. Brain Res 1679:7CrossRef Gatto RG, Li W, Magin RL (2018) Diffusion tensor imaging identifies presymptomatic axonal degeneration in the spinal cord of ALS mice. Brain Res 1679:7CrossRef
25.
Zurück zum Zitat Gatto RG (2018) Diffusion tensor imaging as a tool to detect presymptomatic axonal degeneration in a preclinical spinal cord model of amyotrophic lateral sclerosis. Neural Regen Res 13(3):425–426PubMedPubMedCentralCrossRef Gatto RG (2018) Diffusion tensor imaging as a tool to detect presymptomatic axonal degeneration in a preclinical spinal cord model of amyotrophic lateral sclerosis. Neural Regen Res 13(3):425–426PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77CrossRef Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77CrossRef
27.
Zurück zum Zitat Magin RL, Ingo C, Colon-Perez L, Triplett W, Mareci TH (2013) Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy. Microporous Mesoporous Mater 178:39–43PubMedPubMedCentralCrossRef Magin RL, Ingo C, Colon-Perez L, Triplett W, Mareci TH (2013) Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy. Microporous Mesoporous Mater 178:39–43PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Klages R, Radons G, Sokolov IM (eds) (2012) Anomalous transport: foundations and applications. Wiley, Weinheim Klages R, Radons G, Sokolov IM (eds) (2012) Anomalous transport: foundations and applications. Wiley, Weinheim
29.
Zurück zum Zitat Magin RL, Abdullah O, Baleanu D, Zhou XJ (2008) Anomalous diffusion expressed through fractional order differential operators in the Bloch–Torrey equation. J Magnetic Resonance 190(2):255–270CrossRef Magin RL, Abdullah O, Baleanu D, Zhou XJ (2008) Anomalous diffusion expressed through fractional order differential operators in the Bloch–Torrey equation. J Magnetic Resonance 190(2):255–270CrossRef
30.
Zurück zum Zitat Gorenflo RMF, Moretti D, Pagnini G, Paradisi P (2002) Fractional diffusion: probability distributions and random walk models. Phys A 305(1–2):106–112CrossRef Gorenflo RMF, Moretti D, Pagnini G, Paradisi P (2002) Fractional diffusion: probability distributions and random walk models. Phys A 305(1–2):106–112CrossRef
31.
Zurück zum Zitat Wen CSH, Zhanga X, Korosak D (2010) Anomalous diffusion modeling by fractal and fractional derivatives. Comput Math Appl 59(5):1754–1758CrossRef Wen CSH, Zhanga X, Korosak D (2010) Anomalous diffusion modeling by fractal and fractional derivatives. Comput Math Appl 59(5):1754–1758CrossRef
32.
Zurück zum Zitat Lenzi EK, Ribeiro HV, Tateishi AA, Zola RS, Evangelista LR (2016) Anomalous diffusion and transport in heterogeneous systems separated by a membrane. Proc Math Phys Eng Sci 472(2195):20160502PubMedPubMedCentralCrossRef Lenzi EK, Ribeiro HV, Tateishi AA, Zola RS, Evangelista LR (2016) Anomalous diffusion and transport in heterogeneous systems separated by a membrane. Proc Math Phys Eng Sci 472(2195):20160502PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Klafter J, Lim SC, Metzler R (eds) (2011) Fractional dynamics: recent advances. World Scientific, Sinapore Klafter J, Lim SC, Metzler R (eds) (2011) Fractional dynamics: recent advances. World Scientific, Sinapore
34.
Zurück zum Zitat Mainardi F (2000) Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models. Imperial College Press, London Mainardi F (2000) Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models. Imperial College Press, London
35.
Zurück zum Zitat Ingo C, Magin RL, Parrish TB (2014) New insights into the fractional order diffusion equation using entropy and kurtosis. Entropy 16(11):5838–5852PubMedCrossRef Ingo C, Magin RL, Parrish TB (2014) New insights into the fractional order diffusion equation using entropy and kurtosis. Entropy 16(11):5838–5852PubMedCrossRef
36.
Zurück zum Zitat Ingo C, Barrick TR, Webb AG, Ronen I (2017) Accurate Padé global approximations for the Mittag–Leffler function, its inverse, and its partial derivatives to efficiently compute convergent power series. Int J Appl Comput Mat 3:347–362CrossRef Ingo C, Barrick TR, Webb AG, Ronen I (2017) Accurate Padé global approximations for the Mittag–Leffler function, its inverse, and its partial derivatives to efficiently compute convergent power series. Int J Appl Comput Mat 3:347–362CrossRef
37.
Zurück zum Zitat Mount SL, Schwarz JE, Taatjes DJ (1997) Prolonged storage of fixative for electron microscopy: effects on tissue preservation for diagnostic specimens. Ultrastruct Pathol 21(2):195–200PubMedCrossRef Mount SL, Schwarz JE, Taatjes DJ (1997) Prolonged storage of fixative for electron microscopy: effects on tissue preservation for diagnostic specimens. Ultrastruct Pathol 21(2):195–200PubMedCrossRef
38.
Zurück zum Zitat Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137A–138A Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137A–138A
39.
Zurück zum Zitat Vranceanu F, Perkins GA, Terada M, Chidavaenzi RL, Ellisman MH, Lysakowski A (2012) Striated organelle, a cytoskeletal structure positioned to modulate hair-cell transduction. Proc Natl Acad Sci USA 109(12):4473–4478PubMedCrossRef Vranceanu F, Perkins GA, Terada M, Chidavaenzi RL, Ellisman MH, Lysakowski A (2012) Striated organelle, a cytoskeletal structure positioned to modulate hair-cell transduction. Proc Natl Acad Sci USA 109(12):4473–4478PubMedCrossRef
40.
Zurück zum Zitat Shaffer JJ, Ghayoor A, Long JD, Kim RE, Lourens S, O’Donnell LJ, Westin CF, Rathi Y, Magnotta V, Paulsen JS, Johnson HJ (2017) Longitudinal diffusion changes in prodromal and early HD: evidence of white-matter tract deterioration. Hum Brain Mapp 38(3):1460–1477PubMedPubMedCentralCrossRef Shaffer JJ, Ghayoor A, Long JD, Kim RE, Lourens S, O’Donnell LJ, Westin CF, Rathi Y, Magnotta V, Paulsen JS, Johnson HJ (2017) Longitudinal diffusion changes in prodromal and early HD: evidence of white-matter tract deterioration. Hum Brain Mapp 38(3):1460–1477PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Phillips O, Squitieri F, Sanchez-Castaneda C, Elifani F, Caltagirone C, Sabatini U, Di Paola M (2014) Deep white matter in Huntington’s disease. PLoS One 9(10):e109676PubMedPubMedCentralCrossRef Phillips O, Squitieri F, Sanchez-Castaneda C, Elifani F, Caltagirone C, Sabatini U, Di Paola M (2014) Deep white matter in Huntington’s disease. PLoS One 9(10):e109676PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Phillips OR, Joshi SH, Squitieri F, Sanchez-Castaneda C, Narr K, Shattuck DW, Caltagirone C, Sabatini U, DiPaola M (2016) Major superficial white matter abnormalities in Huntington’s disease. Front Neurosci 10:197PubMedPubMedCentralCrossRef Phillips OR, Joshi SH, Squitieri F, Sanchez-Castaneda C, Narr K, Shattuck DW, Caltagirone C, Sabatini U, DiPaola M (2016) Major superficial white matter abnormalities in Huntington’s disease. Front Neurosci 10:197PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Symms M, Jager HR, Schmierer K, Yousry TA (2004) A review of structural magnetic resonance neuroimaging. J Neurol Neurosurg Psychiat 75(9):1235–1244PubMedCrossRef Symms M, Jager HR, Schmierer K, Yousry TA (2004) A review of structural magnetic resonance neuroimaging. J Neurol Neurosurg Psychiat 75(9):1235–1244PubMedCrossRef
44.
Zurück zum Zitat Höfling F, Franosch T (2013) Anomalous transport in the crowded world of biological cells. Rep Prog Phys 76:046602PubMedCrossRef Höfling F, Franosch T (2013) Anomalous transport in the crowded world of biological cells. Rep Prog Phys 76:046602PubMedCrossRef
45.
Zurück zum Zitat Schumer R, Meerschaert MM, Baeumer B (2009) Fractional advection–dispersion equations for modeling transport at the Earth surface. J Geophys Res 114:F00A07 Schumer R, Meerschaert MM, Baeumer B (2009) Fractional advection–dispersion equations for modeling transport at the Earth surface. J Geophys Res 114:F00A07
46.
Zurück zum Zitat Morton AJ, Glynn D, Leavens W, Zheng Z, Faull RL, Skepper JN, Wight JM (2009) Paradoxical delay in the onset of disease caused by super-long CAG repeat expansions in R6/2 mice. Neurobiol Dis 33(3):331–341PubMedCrossRef Morton AJ, Glynn D, Leavens W, Zheng Z, Faull RL, Skepper JN, Wight JM (2009) Paradoxical delay in the onset of disease caused by super-long CAG repeat expansions in R6/2 mice. Neurobiol Dis 33(3):331–341PubMedCrossRef
47.
Zurück zum Zitat Li H, Li SH, Yu ZX, Shelbourne P, Li XJ (2001) Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington’s disease mice. J Neurosci 21(21):8473–8481PubMedPubMedCentralCrossRef Li H, Li SH, Yu ZX, Shelbourne P, Li XJ (2001) Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington’s disease mice. J Neurosci 21(21):8473–8481PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Liu W, Yang J, Burgunder J, Cheng B, Shang H (2016) Diffusion imaging studies of Huntington’s disease: a meta-analysis. Park Relat Disord 32:94–101CrossRef Liu W, Yang J, Burgunder J, Cheng B, Shang H (2016) Diffusion imaging studies of Huntington’s disease: a meta-analysis. Park Relat Disord 32:94–101CrossRef
49.
Zurück zum Zitat Matsui JT, Vaidya JG, Johnson HJ, Magnotta VA, Long JD, Mills JA, Lowe MJ, Sakaie KE, Rao SM, Smith MM, Paulsen JS (2014) Diffusion weighted imaging of prefrontal cortex in prodromal Huntington’s disease. Hum Brain Mapp 35(4):1562–1573PubMedCrossRef Matsui JT, Vaidya JG, Johnson HJ, Magnotta VA, Long JD, Mills JA, Lowe MJ, Sakaie KE, Rao SM, Smith MM, Paulsen JS (2014) Diffusion weighted imaging of prefrontal cortex in prodromal Huntington’s disease. Hum Brain Mapp 35(4):1562–1573PubMedCrossRef
51.
Zurück zum Zitat Van Camp N, Blockx I, Camon L, de Vera N, Verhoye M, Veraart J, Van Hecke W, Martinez E, Soria G, Sijbers J, Planas AM, Van der Linden A (2012) A complementary diffusion tensor imaging (DTI)-histological study in a model of Huntington’s disease. Neurobiol Aging 33(5):945–959PubMedCrossRef Van Camp N, Blockx I, Camon L, de Vera N, Verhoye M, Veraart J, Van Hecke W, Martinez E, Soria G, Sijbers J, Planas AM, Van der Linden A (2012) A complementary diffusion tensor imaging (DTI)-histological study in a model of Huntington’s disease. Neurobiol Aging 33(5):945–959PubMedCrossRef
51.
Zurück zum Zitat Phillips O, Sanchez-Castaneda C, Elifani F, Maglione V, Di Pardo A, Caltagirone C, Squitieri F, Sabatini U, Di Paola M (2013) Tractography of the corpus callosum in Huntington’s disease. PLoS One 8(9):e73280PubMedPubMedCentralCrossRef Phillips O, Sanchez-Castaneda C, Elifani F, Maglione V, Di Pardo A, Caltagirone C, Squitieri F, Sabatini U, Di Paola M (2013) Tractography of the corpus callosum in Huntington’s disease. PLoS One 8(9):e73280PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45(2):265–269PubMedCrossRef Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45(2):265–269PubMedCrossRef
53.
Zurück zum Zitat Weaver KE, Richards TL, Liang O, Laurino MY, Samii A, Aylward EH (2009) Longitudinal diffusion tensor imaging in Huntington’s Disease. Exp Neurol 216(2):525–529PubMedCrossRef Weaver KE, Richards TL, Liang O, Laurino MY, Samii A, Aylward EH (2009) Longitudinal diffusion tensor imaging in Huntington’s Disease. Exp Neurol 216(2):525–529PubMedCrossRef
54.
Zurück zum Zitat Porrero C, Rubio-Garrido P, Avendano C, Clasca F (2010) Mapping of fluorescent protein-expressing neurons and axon pathways in adult and developing Thy1-eYFP-H transgenic mice. Brain Res 1345:59–72PubMedCrossRef Porrero C, Rubio-Garrido P, Avendano C, Clasca F (2010) Mapping of fluorescent protein-expressing neurons and axon pathways in adult and developing Thy1-eYFP-H transgenic mice. Brain Res 1345:59–72PubMedCrossRef
55.
Zurück zum Zitat Chan CS, Surmeier DJ (2014) Astrocytes go awry in Huntington’s disease. Nat Neurosci 17(5):641–642PubMedCrossRef Chan CS, Surmeier DJ (2014) Astrocytes go awry in Huntington’s disease. Nat Neurosci 17(5):641–642PubMedCrossRef
56.
Zurück zum Zitat Huang B, Wei W, Wang G, Gaertig MA, Feng Y, Wang W, Li XJ, Li S (2015) Mutant huntingtin downregulates myelin regulatory factor-mediated myelin gene expression and affects mature oligodendrocytes. Neuron 85(6):1212–1226PubMedPubMedCentralCrossRef Huang B, Wei W, Wang G, Gaertig MA, Feng Y, Wang W, Li XJ, Li S (2015) Mutant huntingtin downregulates myelin regulatory factor-mediated myelin gene expression and affects mature oligodendrocytes. Neuron 85(6):1212–1226PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Bartzokis G, Lu PH, Tishler TA, Fong SM, Oluwadara B, Finn JP, Huang D, Bordelon Y, Mintz J, Perlman S (2007) Myelin breakdown and iron changes in Huntington’s disease: pathogenesis and treatment implications. Neurochem Res 32(10):1655–1664PubMedCrossRef Bartzokis G, Lu PH, Tishler TA, Fong SM, Oluwadara B, Finn JP, Huang D, Bordelon Y, Mintz J, Perlman S (2007) Myelin breakdown and iron changes in Huntington’s disease: pathogenesis and treatment implications. Neurochem Res 32(10):1655–1664PubMedCrossRef
58.
Zurück zum Zitat Crawford HE, Hobbs NZ, Keogh R, Langbehn DR, Frost C, Johnson H, Landwehrmeyer B, Reilmann R, Craufurd D, Stout JC, Durr A, Leavitt BR, Roos RA, Tabrizi SJ, Scahill RI (2013) Corpus callosal atrophy in premanifest and early Huntington’s disease. J Huntingt Dis 2(4):517–526 Crawford HE, Hobbs NZ, Keogh R, Langbehn DR, Frost C, Johnson H, Landwehrmeyer B, Reilmann R, Craufurd D, Stout JC, Durr A, Leavitt BR, Roos RA, Tabrizi SJ, Scahill RI (2013) Corpus callosal atrophy in premanifest and early Huntington’s disease. J Huntingt Dis 2(4):517–526
59.
Zurück zum Zitat Gomez-Tortosa E, MacDonald ME, Friend JC, Taylor SA, Weiler LJ, Cupples LA, Srinidhi J, Gusella JF, Bird ED, Vonsattel JP, Myers RH (2001) Quantitative neuropathological changes in presymptomatic Huntington’s disease. Ann Neurol 49(1):29–34PubMedCrossRef Gomez-Tortosa E, MacDonald ME, Friend JC, Taylor SA, Weiler LJ, Cupples LA, Srinidhi J, Gusella JF, Bird ED, Vonsattel JP, Myers RH (2001) Quantitative neuropathological changes in presymptomatic Huntington’s disease. Ann Neurol 49(1):29–34PubMedCrossRef
60.
Zurück zum Zitat Chilla GS, Tan CH, Xu C, Poh CL (2015) Diffusion weighted magnetic resonance imaging and its recent trend-a survey. Quant Imag Med Surg 5(3):407–422 Chilla GS, Tan CH, Xu C, Poh CL (2015) Diffusion weighted magnetic resonance imaging and its recent trend-a survey. Quant Imag Med Surg 5(3):407–422
61.
Zurück zum Zitat Zhang J, Jones MV, McMahon MT, Mori S, Calabresi PA (2012) In vivo and ex vivo diffusion tensor imaging of cuprizone-induced demyelination in the mouse corpus callosum. Magn Reson Med 67:750–759PubMedCrossRef Zhang J, Jones MV, McMahon MT, Mori S, Calabresi PA (2012) In vivo and ex vivo diffusion tensor imaging of cuprizone-induced demyelination in the mouse corpus callosum. Magn Reson Med 67:750–759PubMedCrossRef
62.
Zurück zum Zitat Ryutaro Y, Junichi H, Yoshifumi A, Fumiko S, Keitaro Y, Yuji K, Hideyuki O, Kenji FT (2018) Quantitative temporal changes in DTI values coupled with histological properties in cuprizone-induced demyelination and remyelination. Neurochem Intern 119:151–158CrossRef Ryutaro Y, Junichi H, Yoshifumi A, Fumiko S, Keitaro Y, Yuji K, Hideyuki O, Kenji FT (2018) Quantitative temporal changes in DTI values coupled with histological properties in cuprizone-induced demyelination and remyelination. Neurochem Intern 119:151–158CrossRef
63.
Zurück zum Zitat Liang Y, Ye AQ, Chen W, Gatto RG, Colon-Perez L, Mareci TH, Magin RL (2016) A fractal derivative model for the characterization of anomalous diffusion in magnetic resonance imaging. Commun Nonlinear Sci Numer Simul 39:529–537CrossRef Liang Y, Ye AQ, Chen W, Gatto RG, Colon-Perez L, Mareci TH, Magin RL (2016) A fractal derivative model for the characterization of anomalous diffusion in magnetic resonance imaging. Commun Nonlinear Sci Numer Simul 39:529–537CrossRef
64.
Zurück zum Zitat Ingo C, Sui Y, Chen Y, Parrish TB, Webb AG, Ronen I (2015) Parsimonious continuous time random walk models and kurtosis for diffusion in magnetic resonance of biological tissue. Front Phys 3:11PubMedPubMedCentralCrossRef Ingo C, Sui Y, Chen Y, Parrish TB, Webb AG, Ronen I (2015) Parsimonious continuous time random walk models and kurtosis for diffusion in magnetic resonance of biological tissue. Front Phys 3:11PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Hrabe J, Hrabetova S, Segeth K (2004) A model of effective diffusion and tortuosity in the extracellular space of the brain. Biophys J 87(3):1606–1617PubMedPubMedCentralCrossRef Hrabe J, Hrabetova S, Segeth K (2004) A model of effective diffusion and tortuosity in the extracellular space of the brain. Biophys J 87(3):1606–1617PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Sui Y, Wang H, Liu G, Damen FW, Wanamaker C, Li Y, Zhou XJ (2015) Differentiation of low- and high-grade pediatric brain tumors with high b-value diffusion-weighted MR imaging and a fractional order calculus model. Radiology 277(2):489–496PubMedPubMedCentralCrossRef Sui Y, Wang H, Liu G, Damen FW, Wanamaker C, Li Y, Zhou XJ (2015) Differentiation of low- and high-grade pediatric brain tumors with high b-value diffusion-weighted MR imaging and a fractional order calculus model. Radiology 277(2):489–496PubMedPubMedCentralCrossRef
Metadaten
Titel
Detection of axonal degeneration in a mouse model of Huntington’s disease: comparison between diffusion tensor imaging and anomalous diffusion metrics
verfasst von
Rodolfo G. Gatto
Allen Q. Ye
Luis Colon-Perez
Thomas H. Mareci
Anna Lysakowski
Steven D. Price
Scott T. Brady
Muge Karaman
Gerardo Morfini
Richard L. Magin
Publikationsdatum
15.02.2019
Verlag
Springer International Publishing
Erschienen in
Magnetic Resonance Materials in Physics, Biology and Medicine / Ausgabe 4/2019
Print ISSN: 0968-5243
Elektronische ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-019-00742-6

Weitere Artikel der Ausgabe 4/2019

Magnetic Resonance Materials in Physics, Biology and Medicine 4/2019 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.