To develop and validate a deep learning model for detecting post-endovascular aortic repair (EVAR) endoleak from non-contrast CT.
Methods
This retrospective study involved 245 patients who underwent EVAR between September 2016 and December 2022. All patients underwent both non-enhanced and enhanced follow-up CT. The presence of endoleak was evaluated based on computed tomography angiography (CTA) and radiology reports. First, the aneurysm sac was segmented, and radiomic features were extracted on non-contrast CT. Statistical analysis was conducted to investigate differences in shape and density characteristics between aneurysm sacs with and without endoleak. Subsequently, a deep learning model was trained to generate predicted segmentation of the endoleak. A binary decision was made based on whether the model produced a segmentation to detect the presence of endoleak. The absence of a predicted segmentation indicated no endoleak, while the presence of a predicted segmentation indicated endoleak. Finally, the performance of the model was evaluated by comparing the predicted segmentation with the reference segmentation obtained from CTA. Model performance was assessed using metrics such as dice similarity coefficient, sensitivity, specificity, and the area under the curve (AUC).
Results
This study finally included 85 patients with endoleak and 82 patients without endoleak. Compared to patients without endoleak, patients with endoleak had higher CT values and greater dispersion. The AUC in validation group was 0.951, dice similarity coefficient was 0.814, sensitivity was 0.877, and specificity was 0.884.
Conclusion
This deep learning model based on non-contrast CT can detect endoleak after EVAR with high sensitivity.
Graphic Abstract
×
Anzeige
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Wenn 2026 in Deutschland das Lungenkrebsscreening mittels Low-Dose-Computertomografie (LDCT) eingeführt wird, wird es auch viele Zufallsbefunde ans Licht bringen. Das birgt Chancen und Risiken.
Die jährlich rund 93 Millionen CTs in den USA könnten künftig zu über 100.000 zusätzlichen Krebserkrankungen führen, geht aus einer Modellrechnung hervor. Damit würde eine von 20 Krebserkrankungen auf die ionisierende Strahlung bei CT-Untersuchungen zurückgehen.
Personen, die an einem Plattenepithelkarzinom im Kopf-Hals-Bereich erkrankt sind, haben ein erhöhtes Risiko für Metastasen oder zweite Primärmalignome der Lunge. Eine Studie hat untersucht, wie die radiologische Überwachung aussehen sollte.
Nach dem G-BA-Beschluss zur erweiterten Verordnungsfähigkeit von Lipidsenkern rechnet die DEGAM mit 200 bis 300 neuen Dauerpatienten pro Praxis. Im Interview erläutert Präsidiumsmitglied Erika Baum, wie Hausärztinnen und Hausärzte am besten vorgehen.