Skip to main content
Erschienen in: Journal of Cancer Survivorship 1/2021

Open Access 28.09.2020

Determinants of adherence to physical cancer rehabilitation guidelines among cancer patients and cancer centers: a cross-sectional observational study

verfasst von: Charlotte IJsbrandy, Petronella B. Ottevanger, Winald R. Gerritsen, Wim H. van Harten, Rosella P. M. G. Hermens

Erschienen in: Journal of Cancer Survivorship | Ausgabe 1/2021

Abstract

Purpose

To tailor implementation strategies that maximize adherence to physical cancer rehabilitation (PCR) guidelines, greater knowledge concerning determinants of adherence to those guidelines is needed. To this end, we assessed the determinants of adherence to PCR guidelines in the patient and cancer center.

Methods

We investigated adherence variation of PCR guideline-based indicators regarding [1] screening with the Distress Thermometer (DT), [2] information provision concerning physical activity (PA) and physical cancer rehabilitation programs (PCRPs), [3] advice to take part in PA and PCRPs, [4] referral to PCRPs, [5] participation in PCRPs, and [6] PA uptake (PAU) in nine cancer centers. Furthermore, we assessed patient and cancer center characteristics as possible determinants of adherence. Regression analyses were used to determine associations between guideline adherence and patient and cancer center characteristics. In these analyses, we assumed the patient (level 1) nested within the cancer center (level 2).

Results

Nine hundred and ninety-nine patients diagnosed with cancer between January 2014 and June 2015 were included. Of the 999 patients included in the study, 468 (47%) received screening with the DT and 427 (44%) received information provision concerning PA and PCRPs. Subsequently, 550 (56%) patients were advised to take part in PA and PCRPs, which resulted in 174 (18%) official referrals. Ultimately, 280 (29%) patients participated in PCRPs, and 446 (45%) started PAU. Screening with the DT was significantly associated with information provision concerning PA and PCRPs (OR 1.99, 95% CI 1.47–2.71), advice to take part in PA and PCRPs (OR 1.79, 95% CI 1.31–2.45), referral to PCRPs (OR 1.81, 95% CI 1.18–2.78), participation in PCRPs (OR 2.04, 95% CI 1.43–2.91), and PAU (OR 1.69, 95% CI 1.25–2.29). Younger age, male gender, breast cancer as the tumor type, ≥2 cancer treatments, post-cancer treatment weight gain/loss, employment, and fatigue were determinants of guideline adherence. Less variation in scores of the indicators between the different cancer centers was found. This variation between centers was too low to detect any association between center characteristics with the indicators.

Conclusions

The implementation of PCR guidelines is in need of improvement. We found determinants at the patient level associated with guideline-based PCR care.

Implications for Cancer Survivors

Implementation strategies that deal with the determinants of adherence to PCR guidelines might improve the implementation of PCR guidelines and the quality of life of cancer survivors.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s11764-020-00921-8) contains supplementary material, which is available to authorized users.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
EORTC QLQ-C30
The European Organization for Research and Treatment of Cancer Quality of Life Questionnaire
ICC
Intra-class coefficient
MFI-20
Multidimensional Fatigue Inventory-20
OR
Odds ratio
PA
Physical activity
PAM-13
Patient Activity Measurement-13
PAU
Physical activity uptake
PCR
Physical cancer rehabilitation
PCR guideline
Physical cancer rehabilitation guideline
PCRP
Physical cancer rehabilitation program
QoL
Quality of life

Introduction

It is well known that the physical activity (PA) levels of patients affected by cancer generally decline [1], and only a small proportion of the patients with cancer get sufficient PA during treatment [2, 3]. The majority of patients fail to return to pre-diagnosis activity levels following treatment [2, 3]; however, PA improves both the physical and psychosocial functioning [415] of patients affected by cancer by decreasing fatigue [5, 7, 8, 1625], improving cardiopulmonary fitness [7, 8, 16, 26], and improving quality of life (QoL) [8, 16, 19, 21, 2632] while also decreasing cancer recurrence and cancer-specific mortality [3336].
Evidence-based guidelines recommend the implementation of physical cancer rehabilitation programs (PCRPs) or other initiatives to improve the uptake of PA during and after cancer treatment [16, 3543]. As the number of cancer survivors is still rising, the implementation of these guidelines has become an increasingly important topic worldwide [43, 44]. Depending on the cancer site and treatment, 30–90% of cancer patients require physical rehabilitation [4548]. Regrettably, it appears that adherence to current guidelines on physical cancer rehabilitation (PCR) is low [4953], and material on approaches to implementing PCR guidelines is scarce [5458]. Patients who will accept and benefit from PCRPs can be identified by means of the Distress Thermometer (DT) [59, 60]. Using the DT for screening appears to be a good starting point for accomplishing adherence to current PCR guidelines, but evidence supporting this hypothesis is missing.
Most guidelines do not implement themselves and require implementation strategies [61, 62]. Various strategies have been advocated for the implementation of healthcare innovations, each based on different assumptions and theories on human behavior and organizations [61, 6370]. Strategies tailored to determinants and barriers are recommended [71, 72] because tailoring is expected to contribute to their effectiveness [73] (odds ratios of 1.27 to 1.93 [74]). To design tailored implementation strategies, we used the stepwise theoretical framework of Grol and Wensing’s “Implementation of Change Model” [75, 76]. In doing so, we gained insight into current practice, potential determinants that predict adherence, and possible barriers and facilitators [77, 78] influencing PCR guideline implementation. Determinants and barriers often arise at multiple levels within the healthcare system (at the patient, healthcare provider (HCP), cancer center, and healthcare organization levels) [79]. To assess the barriers, we performed two earlier studies [77, 78]. We found multiple barriers at the level of PCR guidelines, PCRPs, and patients, but also at the level of HCPs, healthcare organization, and governance. Since a strategy that is additionally tailored to determinants of implementation is more effective, we also wanted to investigate determinants of PCR guideline implementation [73].
Research in other fields of care has demonstrated that a variety of determinants of the targeted patients and cancer centers can explain poor implementation of the recommended care [8085]. Tailoring the strategy to these determinants will improve the chance to successful guideline implementation. Assessing determinants before starting the implementation is comparable with clinical practice in which a diagnosis is made so that the right treatment can be chosen [86]. However, determinants related to PCR guidelines being followed are currently not well known. To help tailor implementation strategies and maximize guideline adherence, and thereby the number of patients participating in PCRPs, more knowledge about the determinants of adherence to PCR guidelines is needed.
We aimed to (1) assess the adherence to PCR guidelines for patients with cancer. We hypothesized that the use of the distress thermometer (DT) could help to identify patients in need of PCRPs and persuade them to benefit from them; therefore, we also aimed to (2) assess the effect of the use of the DT on this adherence. Furthermore, we aimed to (3) analyze the determinants of adherence to PCR guidelines of (3a) cancer centers and (3b) the patients with cancer treated in these cancer centers.

Methods

Study design

An observational study was conducted to assess adherence to and determinants of PCR guidelines in nine cancer centers. This was done at cancer centers and on patients who have been treated in these cancer centers, while taking the clustering of data into account. The existing registration systems and patient and HCP questionnaires were utilized.

Study population and recruitment

The patient cohort was recruited from the nine participating cancer centers located in categorical, university, teaching, and non-teaching hospitals in the Netherlands. The cancer registry was used for the selection of eligible patients: all patients with a history of breast, female organ, urogenital organ, gastrointestinal, and hematological malignancies diagnosed between January 2014 and June 2015 who had successfully completed their primary treatment without signs of recurrence or metastases. The treating physicians asked them whether they wanted to participate and give informed consent. One HCP at each center was asked to collect data on the characteristics of their cancer center.

Data collection

Indicator scores for processes and patient outcomes of care as well as patient and center characteristics were measured to assess adherence to PCR guidelines and the determinants of guideline adherence. The indicators were based on (inter)national, evidence-based PCR guidelines [37, 87, 88]. A national panel of 10–12 professional experts and patients used the RAND-modified Delphi method to develop the indicators [89, 90]. We developed indicators that measure PCR guideline adherence that have the potential to be valuable, reliable, measurable, applicable, have improvement potential, have preferably minimum amount of missing data, and contain discriminatory capacity. The main indicator was distress screening with the DT [91, 92]. The other indicators were (1) information provision concerning PA and PCRPs, (2) advice to take part in PA and PCRPs, (3) referral to PCRPs, (4) participation in PCRPs, and (5) PA uptake (PAU). In supplement 1, the definitions of the psychometric characteristics used to develop and measure the quality of the indicators used is comprehensively explicated. All developed indicators showed to be valuable, reliable, measurable, applicable, have improvement potential, have minimum amount of missing data, and four indicators contain sufficient discriminatory capacity. Supplement 2 provides an overview of the range of potential values of each developed and measured indicator regarding the psychometric characteristics.
The indicators and patient characteristics were measured among patients by means of questionnaires. To assess cancer center characteristics, existing registry systems and questionnaires distributed among HCPs involved in cancer care in the nine cancer centers were used.

Operational definition of the main indicator

Screening with the DT
The percentage is calculated by the number of patients included in the study who indicated in the patients’ questionnaire having received screening with the DT [91, 92] one or more times during their cancer treatment or follow-up visits from one or more healthcare professionals from the cancer center where they were treated for cancer, divided by the total number of patients included in the study who completed the patients’ questionnaire.
The questionnaire asked patients if they had received screening with the DT [91, 92]. A photograph of the DT was shown in the questionnaire.
Supplement 3 provides a detailed description of the DT and the other questionnaires used in the present study.

Operational definition of the other indicators

Information provision concerning PA and PCRPs
The percentage is calculated by the number of patients who indicated in the patients’ questionnaire that they received information about PA and PCRPs from one or more healthcare professionals from the cancer center where they were treated for cancer one or more times during their cancer treatment or follow-up visits, divided by the total number of patients included in the study who completed the patients’ questionnaire.
Advice to take part in PA and PCRPs
The percentage is calculated by the number of patients who indicated in the patients’ questionnaire that they received advice to improve their PA and join a PCRP during and after cancer treatment from one or more healthcare professionals from the cancer center where they were treated for cancer one or more times during their cancer treatment or follow-up visits, divided by the total number of patients included in the study who completed the patients’ questionnaire.
Referral to PCRPs
The percentage is calculated by the number of patients who indicated in a patients’ questionnaire that they received a referral to a PCRP by one of their healthcare professionals from the cancer center where they were treated for the cancer one or more times during their cancer treatment or follow-up visits, divided by the total number of patients included in the study who completed the patients’ questionnaire.
Participation in PCRPs
The percentage is calculated by the number of patients who indicated in a patients’ questionnaire that they had joined a PCRP during and/or after their cancer treatment, divided by the total number of patients included in the study who completed the patients’ questionnaire.
PA uptake (PAU)
The percentage is calculated by the number of patients who indicated in a patients’ questionnaire that their PA had increased following cancer and cancer treatment compared with PA prior to cancer treatment, divided by the total number of patients included in the study who completed the patients’ questionnaire.

Characteristics of patients and cancer centers

Patient characteristics
The patient characteristics were age (continuous), gender (male or female), nationality (Dutch or other nationality), tumor type (breast, female organ, urogenital organ, and gastrointestinal and hematological malignancies), type of any treatment previously received for treating the tumor (surgery, chemotherapy, radiotherapy, hormonal therapy, or other), multi-treatment (≥2/<2 cancer treatments), comorbidities (≥2/<2), post-cancer treatment weight gain/loss (gain, stable, loss), residential circumstances (alone or cohabitating), educational level (high, middle, or low), and employment status (employed or unemployed).
Moreover, patient-reported outcomes (PROs) were included in patient characteristics.

Patient-reported outcomes (PROs)

QoL
The European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ-C30) [93] was used to measure the QoL of the patients. A measurement model for the QLQ-C30 that yields a single summary score based on 13 scales (27 items) was also calculated [94].
Fatigue
The Multidimensional Fatigue Inventory-20 (MFI-20) questionnaire [95, 96] was used to measure patient fatigue.
Patient empowerment
Patient empowerment was defined as the individual knowledge, skills, and confidence for managing the patient’s own health and healthcare. The state of patient empowerment was measured using the patient activity measurement-13 (PAM-13) [97, 98].
Cancer center characteristics
The cancer center characteristics were type of hospital (categorical, university, teaching, and non-teaching), Multidisciplinary Oncological Rehabilitation Board (MORB) available (yes or no), standardized screening with DT (yes or no), and PCRP in cancer center or connected cancer center available (internally, externally, or not at all). A MORB is a group of HCPs involved in oncological rehabilitation (e.g., surgeons, radiotherapists, medical oncologists, gynecologists, urologists, rehabilitation physicians, sports-medicine physicians, physiotherapists, physician assistants, nurses, and psychologists) interacting dynamically, interdependently, and adaptively toward common, valued rehabilitation plans for the patients.

Data analysis

We used the Statistical Package for the Social Sciences (IBM SPSS Statistics version 22 for Windows; SPSS, Chicago, IL, USA) to enter the collected data in a database. We used descriptive analyses (frequencies, percentages, means, and SD or median and interquartile ranges) to describe patient characteristics and the scores for adherence to the indicators.
To determine whether our data were normally distributed, we examined the distribution of our continuous outcome measures and carried out quantile–quantile (Q-Q) plots. We also calculated the skewness and kurtosis of these variables. For all variables, both values of the skewness and kurtosis were between − 1 and + 1, and Q-Q plots showed a straight line; therefore, they met normality requirements.
Because of the hierarchical structure of the study (patients nested within cancer centers), we performed multilevel analyses. We used univariate multilevel analyses for the indicators; the indicators were used as dependent variables. The characteristics of the patients and cancer centers were used as independent variables. Variables with P < 0.20 in the univariate multilevel analysis were selected for the multilevel multivariate analysis. Collinearity among independent variables was tested with either a Pearson or Spearman correlation. If two independent variables (rho >0.6) correlated strongly, only the most clinically relevant characteristic was included. Multicollinearity was tested with the variance inflation factor, with values greater than 10 indicating multicollinearity.
We wanted to assess the extent to which the indicator scores could be explained by characteristics of (1) cancer centers, but also (2) the patients who were treated in these cancer centers, while taking the clustering of data into account. Our dataset contains information at the patient level from nine different cancer centers for each indicator.
For this purpose, we used SAS software (SAS 9.2 for Windows; SAS Institute, Cary, North Carolina, USA) for our multilevel multivariable regression analyses. We used the Glimmix procedure for dichotomous data and the MIXED procedure for continuous data to determine (1) the association between the scores of the indicators and patient and cancer center characteristics, and (2) the association between proper screening and the other indicators. The other indicators were information provision concerning PA and PCRPs, advice to take part in PA and PCRPs, referral to PCRPs, participation in PCRPs and PAU. The patient characteristics were included in the model as confounders in the analysis.
Multilevel models were used because these models take into consideration the variability associated with each level of nesting and the within-patient correlation. In these analyses, it was assumed that the patient (level 1) nested within the cancer center (level 2). We ran a model with a random intercept and all other variables fixed. Significance for multivariate analyses was set at P < 0.05, based on two-sided testing. Odds ratios (OR) and 95% confidence intervals (95% CI) were used to describe (1) the association between the scores of the indicators and patient and cancer center characteristics, and (2) the association of proper screening and the other indicators.
The intra-class coefficient (ICC) was calculated for each outcome to obtain insight into the clustering effect of the cancer centers.

Results

Nine cancer centers and their patients were recruited and included in the study. Of the 2069 patients who matched the inclusion criteria invited, 1211 patients (59%) responded, and 999 patients (48%) agreed to participate and gave informed consent.

Patient and cancer center characteristics

The mean age of the participants was 66.3 years; 60.7% were female and 94% had a Dutch background. The participants had a history of cancer of the breast (31.1%), female organs (16.0%), urogenital organs (23.6%), gastrointestinal (27.7%), and hematological malignancies (1.5%). Eighty-five percent had undergone surgery, 39.8% received chemotherapy, 42.1% radiotherapy, and 21.7% hormonal therapy. Fifty-nine percent had received two or more cancer treatments and 31.7% had two or more comorbidities. Post-cancer treatment, 36.4% gained and 13.2% lost weight, while 50.4% kept a stable weight. Of the participants, 80.5% were cohabiting. As level of education, 38.3% of patients have finished low, 40.4% middle, and 21.2% a higher level of education and 25% were employed. The mean Global Health Status score was 77.5 (SD 18.0), the mean physical function score was 82.5 (SD 18.3), and the mean EORTC-QLQ-C30 summary score was 40.8 (SD 5.4). The Mean General Fatigue score was 10 (SD 4.6) and the Mean Physical Fatigue score was 9.6 (SD 4.4). The mean PAM-13 Total Score was 55.9 (SD 13.1).
In the study, one categorical, two university, two teaching, and four non-teaching hospitals participated related to respectively 5.5, 20.5, 25.2, and 48.7% of the accrued patients. One center had a MORB available. Five hospitals performed standardized screening with the DT. Eight hospitals delivered a PCRP, of which four hospitals delivered internally and four hospitals externally.
Table 1 outlines the characteristics of the patients treated for the various types of cancer. Table 2 outlines the characteristics of the nine cancer centers.
Table 1
Characteristics of the patients
 
Total
Screened with DT
Not screened with DT
Number of patients
999
468
524
Characteristics
  Age in years
    Mean (SD)
66.3 (11.4)
63.1 (11.6)
69.0 (10.4)
 
Total
Screened with DT
Not screened with DT
Number of patients (%*)
Number of patients (%*)
Number of patients (%*)
  Female gender
595 (60.7)
345 (74.5)
248 (48.4)
  Dutch nationality
913 (93.5)
429 (93.4)
480 (93.4)
  Tumor type
    Breast
311 (31.1)
207 (44.2)
103 (19.7)
    Female organs
160 (16.0)
81 (17.3)
78 (14.9)
    Urogenital organs
236 (23.6)
66 (14.1)
169 (32.3)
    Gastrointestinal
277 (27.7)
104 (22.2)
169 (32.3)
    Hematological malignancies
15 (1.5)
10 (2.1)
5 (1.0)
  Previously received treatment
    Surgery
844 (84.5)
421 (90.0)
417 (79.6)
    Chemotherapy
398 (39.8)
235 (50.2)
159 (30.3)
    Radiotherapy
421 (42.1)
228 (48.7)
191 (36.5)
    Hormonal therapy
217 (21.7)
133 (28.4)
83 (15.8)
    Other
53 (5.3)
20 (4.3)
33 (6.3)
  ≥ 2 cancer treatments
590 (59.1)
328 (70.1)
258 (49.2)
  ≥ 2 comorbidities
317 (31.7)
167 (35.7)
149 (28.4)
  Post-cancer treatment weight gain/loss
    Gain
353 (36.4)
193 (42.1)
157 (31.0)
    Stable
489 (50.4)
194 (42.4)
294 (58.0)
    Loss
128 (13.2)
71 (15.5)
56 (11.0)
  Cohabiting
799 (80.5)
380 (81.9)
416 (79.7)
  Educational level
    Low
379 (38.3)
169 (36.6)
205 (39.4)
    Middle
400 (40.4)
197 (42.6)
201 (38.7)
    High
210 (21.2)
96 (20.8)
114 (21.9)
  Employed
246 (25.3)
141(30.9)
104 (20.4)
  Department type
    Categorical
55 (5.5)
27 (5.8)
27 (5.2)
    University
205 (20.5)
76 (16.2)
129 (24.6)
    Teaching
252 (25.2)
108 (23.1)
142 (27.1)
    Non-teaching
487 (48.7)
257 (54.9)
226 (43.1)
  EORTC-QLQ-C30
    Global Health Status/QoL (SD)
77.5 (18.0)
77.5 (17.4)
77.5 (18.5)
    Physical function (SD)
82.5 (18.3)
82.1 (17.9)
82.9 (18.8)
    Mean summary score (SD)
40.8 (5.4)
40.7 (5.4)
40.8 (5.4)
  MFI-20 score
    Mean general fatigue (SD)
10.0 (4.6)
10.5 (4.5)
9.6 (4.6)
    Mean physical fatigue (SD)
9.6 (4.4)
9.9 (4.3)
9.3 (4.4)
  PAM-13
    Mean total score (SD)
55.9 (13.1)
56.4 (12.5)
55.6 (13.7)
DT, Distress Thermometer; EORTC QLQ-C30, The European Organization for Research and Treatment of Cancer Quality of Life Questionnaire; MFI-20, Multidimensional Fatigue Inventory-20; PAM-13, Patient Activity Measurement-13
*valid percentage
Table 2
Characteristics of the cancer centers
 
Number of facilities
Center 1
Center 2
Center 3
Center 4
Center 5
Center 6
Center 7
Center 8
Center 9
Total number of cancer centers
9
         
Type of hospital
  Categorical
1
     
   
  University
2
     
  
  Teaching
2
  
    
 
  Non-teaching
4
 
 
   
MORB available
1
     
   
Standardized screening with DT
5
 
 
 
 
PCRP in cancer center
  Internally
4
  
  
 
  Externally
4
  
 
  
DT, Distress Thermometer; MORB, Multidisciplinary Oncological Rehabilitation Board; PCRP, physical cancer rehabilitation program

Indicator adherence

The score of screening with the DT was 47.2%. Information provision concerning PA and PCRPs scored 44.1%, advice to take part in PA and PCRPs scored 55.6%, referral to PCRPs scored 17.7%, participation in PCRPs scored 28.6%, and PAU scored 45.3%. The indicator scores were higher for the patients who were screened with the DT. Information provision concerning PA and PCRPs scored 55.7% vs. 33.5%, advice to take part in PA and PCRPs 67.0% vs. 45.3%, referral to PCRPs 24.7% vs. 11.5%, participation in PCRPs 38.1% vs. 20.2%, and PAU 54.0% vs. 37.3% for respectively patients screened with the DT versus patients not screened with the DT. Screening with the DT was significantly associated with improved information provision concerning PA and PCRPs (OR 1.99, 95% CI 1.47–2.71), advice to take part in PA and PCRPs (OR 1.79, 95% CI 1.31–2.45), referral to PCRPs (OR 1.81, 95% CI 1.18–2.78), participation in PCRPs (OR 2.04, 95% CI 1.43–2.91), and PAU (OR 1.69, 95% CI 1.25–2.29). Table 3 shows the effect of screening with the DT on the other indicators.
Table 3
Effect of screening with Distress Thermometer on other indicator scores in the multilevel analysis
Effect of screening with Distress Thermometer on
Number of patients
Uncorrected
Corrected for confounders**
OR
95% CI
P value*
OR
95% CI
P value*
Information provision concerning PA and PCRPs
856
2.28
1.72 to 3.01
< 0.0001
1.99
1.47 to 2.71
< 0.0001
Advice to take part in PA and PCRPs
868
2.33
1.76 to 3.08
< 0.0001
1.79
1.31 to 2.45
0.0003
Referral to PCRPs
866
2.61
1.80 to 3.78
< 0.0001
1.81
1.18 to 2.78
0.0067
PCRP participation
865
2.64
1.93 to 3.61
< 0.0001
2.04
1.43 to 2.91
< 0.0001
PAU
867
2.16
1.64 to 2.84
< 0.0001
1.69
1.25 to 2.29
0.0007
CI, confidence interval; OR, odds ratio; PA, physical activity;  PCRP, physical cancer rehabilitation program; PAU, physical activity uptake
*The patient characteristics age, gender, comorbidities (≥ 2/< 2), tumor type, multi-treatment (≥ 2/< 2), weight change after cancer treatment, work status, and the outcome of the Multidimensional Fatigue Inventory-20 were included in the model as confounders in the multilevel analysis

Determinant analysis

The indicator for screening with the DT scored significantly higher with the determinants younger age, female gender, breast cancer as type of tumor, two or more cancer treatments, and post-cancer treatment weight gain/loss.
The determinants younger age, male gender, and breast cancer as type of tumor resulted in significant higher scores of information provision concerning PA and PCRPs.
The determinants two or more cancer treatments, post-cancer treatment weight gain, employment, and higher MFI-20 mean general fatigue scores resulted in significant higher scores of advice to take part in PA and PCRPs.
The determinants younger age, male gender, breast cancer as type of tumor, two or more cancer treatments, post-cancer treatment weight gain, and higher MFI-20 mean general fatigue scores resulted in significant higher scores of referral to PCRPs.
The determinants younger age, male gender, breast cancer as type of tumor, post-cancer treatment weight gain, and higher MFI-20 mean general fatigue scores resulted in significant higher scores of participation in PCRPs.
The determinants younger age and post-cancer treatment weight gain/loss resulted in higher scores of PAU.
Table 4 shows multilevel associations of patient characteristics with the measured indicators.
Table 4
Patient characteristics and their association with the indicator scores in the multilevel analysis
Received screening with Distress Thermometer
Number of patients
OR
95% CI
P value*
 
992
   
Age
 
0.96
0.95 to 0.98
< 0.0001
Male
 
0.57
0.36 to 0.91
0.0194
Tumor type
   
0.0011
  Breast
 
1.00
  
  Female organs
 
0.39
0.21 to 0.73
0.0031
  Urogenital organs
 
0.30
0.15 to 0.63
0.0014
  Gastrointestinal
 
0.46
0.28 to 0.75
0.0019
≥2 cancer treatments
 
1.44
1.04 to 2.00
0.0300
Post-cancer treatment weight gain/loss
   
0.0245
  Stable
 
1.00
  
  Gain
 
1.46
1.06 to 2.01
0.0222
  Loss
 
1.63
1.04 to 2.54
0.0316
Received information provision concerning PA and PCRPs
Number of patients
OR
95% CI
P value*
 
968
   
Age
 
0.97
0.96 to 0.98
< 0.0001
Male
 
1.63
1.04 to 2.56
0.0344
Tumor type
   
< 0.0001
  Breast
 
1.00
  
  Female organs
 
0.40
0.26 to 0.60
< 0.0001
  Urogenital organs
 
0.29
0.17 to 0.51
< 0.0001
Received advice to take part in PA and PCRPs
Number of patients
OR
95% CI
P value*
 
989
   
≥2 cancer treatments
 
2.01
1.48 to 2.72
< 0.0001
Post-cancer treatment weight gain/loss
   
< 0.0001
  Stable
 
1.00
  
  Gain
 
2.07
1.50 to 2.85
< 0.0001
Employed
 
2.00
1.42 to 2.80
< 0.0001
MFI-20—mean general fatigue score
 
1.08
1.05 to 1.12
< 0.0001
Received referral to PCRPs
Number of patients
OR
95% CI
P value*
 
982
   
Age
 
0.98
0.96 to 1.00
0.0137
Male
 
3.26
1.56 to 6.82
0.0018
Tumor type
   
0.0020
  Breast
 
1.00
  
  Female organs
 
0.33
0.14 to 0.77
0.0107
  Urogenital organs
 
0.13
0.04 to 0.37
0.0002
  Gastrointestinal
 
0.31
0.15 to 0.65
0.0020
≥2 cancer treatments
 
2.25
1.36 to 3.73
0.0016
Post-cancer treatment weight gain/loss
   
0.0011
  Stable
 
1.00
  
  Gain
 
2.11
1.39 to 3.20
0.0005
MFI-20—mean general fatigue score
 
1.07
1.02 to 1.11
0.0027
Participated in PCRPs
Number of patients
OR
95% CI
P value*
 
978
   
Age
 
0.98
0.96 to 1.00
0.0009
Male
 
1.92
1.08 to 3.41
0.0265
Tumor type
   
0.0003
  Breast
 
1.00
  
  Female organs
 
0.38
0.21 to 0.69
0.0017
  Urogenital organs
 
0.22
0.10 to 0.48
0.0001
  Gastrointestinal
 
0.34
0.19 to 0.60
0.0002
Post-cancer treatment weight gain/loss
   
< 0.0001
  Stable
 
1.00
  
  Gain
 
2.08
1.47 to 2.94
< 0.0001
MFI-20– mean general fatigue score
 
1.10
1.06 to 1.14
< 0.0001
Increase in PAU
Number of patients
OR
95% CI
P value*
 
992
   
Age
 
0.97
0.95 to 0.98
< 0.0001
Post-cancer treatment weight gain/loss
   
0.0002
  Stable
 
1.00
  
  Gain
 
1.60
1.20 to 2.14
0.0016
  Loss
 
2.12
1.40 to 3.20
0.0004
CI, confidence interval; OR, odds ratio; MFI, Multidimensional Fatigue Inventory-20; PA, physical activity; PCRP, physical cancer rehabilitation program; PAU, physical activity uptake
*Valid percentage
Univariate and multivariable multilevel regression analyses were performed but showed less variation in scores of the indicators between the different cancer centers. The ICCs of the outcomes varied between 0 and 0.085. This means that maximum 8.5% of the variation in an indicator could be explained by differences between cancer centers. This variation between centers was too low to detect any association between center characteristics (such as type of hospital, availability of a MORB, existence of standardized DT screening, and existence of PCRPs) with the indicators.

Discussion

In this observational study, we investigated the adherence to PCR guideline-based indicators and analyzed the associated determinants. We found less than 50% adherence for indicators on screening with the DT, information provision concerning PA and PCRPs, referral to PCRPs, participation in PCRPs, and PAU. Only the indicator for advice to take part in PA and PCRPs scored higher than 50%. Screening with the DT was significantly associated with higher scores of all other indicators. Younger age, male gender, breast cancer as type of tumor, two or more cancer treatments, post-cancer treatment weight gain/loss, employment, and higher scores on MFI-20 mean general fatigue score were positively associated with higher indicator scores. The variation in center characteristics was too low to detect any association with the indicators.
Knowledge and understanding of the determinants of adherence to evidence-based PCR guideline-based indicators in the present study, together with previously published studies assessing the barriers of adherence to evidence-based PCR guidelines [77, 78], can assist HCPs in developing tailored strategies which can lead to improved adherence to PCR guidelines [75] by considering current practice as well as determinants of and barriers to adherence.

Screening with the DT

Screening is a key aspect in the delivery of healthcare. Patients who will accept and benefit from rehabilitation programs can be identified and encouraged to participate in PCRPs by using the DT [59, 60]. Encouraging screening with the DT in daily cancer care will help promote the implementation of PCR guidelines. In our study, 47% of the patients were screened with the DT. Other studies found comparable percentages of screening with the DT of 40–50% [99]. The score of screening with the DT shows room for improvement, especially because the screening was significantly positively associated with higher scores of the other indicators, with ORs between 1.69 and 2.04. Therefore, encouraging screening with the DT is a good first step toward improving adherence to the current PCR guidelines.

Determinants

This is one of the first studies to investigate determinants at the patient and cancer center levels for PCR guideline-based indicators. Other studies examining determinants of guideline adherence have been carried out in several other areas of cancer care, including treatment guidelines for lung, prostate, and gastrointestinal cancers. They found low guideline adherence rates and differences in delivered care associated with hospital type and patient age, gender, and disease stage [100103] as well as educational level [104, 105] and employment status [106]. In addition, implementation strategies developed with knowledge of determinants in these other areas of cancer care did achieve improvement of guideline adherence. Therefore, knowledge of determinants is useful in creating tailored strategies for implementing PCR guidelines.
We detected a higher screening score for women, but higher scores for information provision, referral, and participation in PCRPs for men. Gender disparity in the use of cancer rehabilitation care and other healthcare services has been noted before in the literature [83, 107109].
Traditional notions of masculinity that emphasize the values of being autonomous and less emotional may lead men to be reluctant to express emotion or distress [110112]. In addition to the higher levels of media attention being paid to the post-cancer physical and psychosocial symptoms experienced by women, HCPs might be influenced by gender bias and less aware of screening men for distress. Men also seem to be more eager for sufficient explanations concerning screening in order to make a decision to participate [56, 57].
Besides screening, gender bias has been reported to affect HCP referral and treatment decisions and may also influence decisions on advising women for increasing PA or referral to PCRPs [113115]. Women’s gender-specific roles and PA preferences may also contribute to women not participating in PCRPs. Contemporary the burden of cancer is evenly distributed between the different sexes. Currently, one in five men and one in six women will be diagnosed with cancer [116]; therefore, attention should be paid to improve screening of males, and improving information provision and referrals to PCRPs for female survivors of cancer. We did not distinguish our strategies on sex in our research. Future research can be used to differentiate which strategies are more effective for men and women.
We also found tumor type to be a determinant. Patients with breast cancer receive more screening, information, and referral to PCRPs, and they participate more in PCRPs. Indicator scores were lower for patients with a history of female organ, urogenital organ, and gastrointestinal malignancies. One reason for this is that most initiatives for improving PCR guideline adherence are designed for and focused on breast cancer. Screening of patients with breast cancer with the DT was relatively well adhered to, as not screening means no accreditation for breast cancer care as required by the patient organization for patients with breast cancer. Patients with gastrointestinal and female organ malignancies judge their cancer care to be of lower quality than that of patients with other tumor types [117]. After completing their primary treatment, patients with gastrointestinal malignancies also rated the information provided as significantly lower in quality than that of patients with breast cancer [118]. Worldwide, malignancies of the gastrointestinal, reproductive, and urogenital systems account for approximately 35% of all malignancies, which is three times the incidence of breast cancer [119, 120]. Therefore, it might be beneficial to preferably focus the strategy on cancer patients and their HCPs in the care pathways for gastrointestinal, female organ, and urogenital organ oncology.
The recruitment of patients with abdominopelvic cavity tumors to PCRPs is difficult [7, 8, 26, 121]. HCPs are more hesitant to refer patients who have undergone major abdominal surgery to PCRPs and typically advise patients to refrain from PA for a number of weeks after surgery [7]. Teaching the HCPs about the positive associations of PA with less physical and psychosocial symptoms and even improved mortality [33, 34, 122124] might be a good strategy. In addition, tailored PA guidelines need to be developed since these patients require different PCRPs due to a different range of morbidities and needs. The introduction of accreditation for PCR guideline-based care that has proved successful for patients with breast cancer into the pathways for gastrointestinal, female organ, and urogenital organ oncology might be another strategy.
Two or more cancer treatments showed to be a determinant. Patient with fewer treatments overall have fewer visits to the cancer center and encounter fewer HCPs who provide them PCR guideline-based care. For all treatment modalities, it should be clear when, who, and where the PCR care is delivered, preferably stated in a treatment protocol. PCRPs delivered through practical avenues such as print materials, telephone counseling, and web-based programs are an alternative [125129] for patients with fewer visits to the cancer center. Web-based PCRPs with online encouragement, online diaries, and online physical activity programs proved to be feasible with median vigorous PAU over time, and the burden for HCPs appeared to be limited [130132].
Patients with post-cancer treatment weight gain/loss had better adherence to PCR guideline-based indicators. Cancer patients experience weight changes due to the cancer itself or to the cancer treatments, such as loss of muscular mass and increased fat mass [133136]. The weight change might be the reason for paying more attention to PCR. A referral to a dietician might more readily lead patients to PCRPs as a means of returning to their old weight. In addition, PA is one of the main treatments for weight imbalance since it reduces fat mass and improves muscle mass and has a potential role in preventing and treating cachexia [136, 137].
The ORs of age being 0.96–0.98 and ORs of the MFI-20 mean general score being 1.07–1.10 are numerically very close to an OR of 1.00. The absolute influence of the determinants age and fatigue (the MFI-20 mean general score) on the indicator scores will therefore be negligible and not clinically relevant.
However, a higher age has previously been found to be associated with negative patterns in delivered care and lower levels of PA [138142]. In addition, most cancer patients have higher fatigue scores [95], and fatigue is a common and debilitating side effect of cancer and its treatment [143]. It is known that PA can reduce fatigue after the treatment of cancer [144]. More research is necessary to explore the additional effect of strategies focusing on patients with fatigue and of a higher age.

Strengths and limitations

Our study has several strengths. One is that we thoroughly followed the RAND-modified Delphi method [89, 90], which led to the discovery of valid indicators which formed an important basis for measuring guideline-based PCR care. Another is the large study sample of 999 patients, which might have contributed to a reliable dataset for the investigation of the adherence and the analysis of the determinants associated with optimal PCR care.
There are also some limitations which need to be addressed; for example, possible selection bias. Only patients of cancer centers who were willing to participate in our study were included. One can assume these patients have better adherence to PCR guideline-based indicators since these centers are more dedicated to improving this aspect of cancer care. Thus, we expect lower indicator scores in centers less committed to achieving this goal. Further research should also include patients from cancer centers not motivated to implement PCRPs.
One could expect that also organizational characteristics would be associated with performance on indicators related to the provision of distress screening and rehabilitation programs to cancer survivors. Univariate and multivariable multilevel regression analyses showed less variation in scores of the indicators between the different cancer centers. The ICC is calculated as the ratio of the between variance and the total variance (between and within variance). The ICC gives information of the degree of correlation among patients within a cancer center and the proportion of total variance that is attributed to the cluster level (cancer centers). The ICCs of the outcomes varied between 0 and 0.085. This means that maximum 8.5% of the variation in an indicator could be explained by differences between cancer centers, predicting a low chance of between-cluster variability. This variation between centers was too low to detect any association between center characteristics with the indicators. This might be caused by the limited sample size of nine cancer centers and the variation in characteristics between them, indicating that participation of more centers with more variation in characteristics is needed in future research to analyze cancer centers’ characteristics associated with the indicators.
Possible determinants influencing PCR guideline implementation often arise at multiple levels in the healthcare system (patient, HCPs, cancer center, and healthcare organization levels). Currently, cancer care is frequently provided by a multidisciplinary team of HCPs situated in a cancer center. This results in interactive, coordinated care; therefore, we only explored determinants of the cancer centers. However, there may be compelling reasons for both lack of adherence and adherence due to determinants of the individual HCPs, particularly because HCPs’ limited knowledge and skill levels, negative approach, non-commitment to PCRPs, difference in attitude about timing and strategies for cancer rehabilitation, and fear of additional workload all hinder proper PCR care [77, 78, 145, 146]. On the level of the referring providers, limited knowledge levels concerning PCRPs and PCR guidelines hinder proper screening of patients. Moreover, lack of knowledge and skills among HCPs resulted in a lack of qualified information provision for the patients. It also resulted in a lack of guidance in finding the right PCRP and a successful referral for joining the PCRP, both being barriers that impede proper PCR care [77, 78, 145, 146].

Conclusions

Our study highlights the need for improvement in the implementation of PCR guidelines. It demonstrates that there are numerous determinants at the patient level associated with PCR guideline-based indicators. To ascertain cancer center determinants, more cancer centers with greater variation in characteristics are needed in future research. We discovered that screening with the DT is significantly positively associated with higher indicator scores and should be the first step in any successful implementation. The next step is developing and evaluating an implementation strategy based on knowledge of the determinants.

Compliance with ethical standards

Competing interests and disclosure

The authors declare that they have no conflicts of interest.
The regional review board for human research assessed the study (CMO Arnhem–Nijmegen dossier number 2014/211) and judged that ethics approval was not required under Dutch national law. The study was performed in accordance with the privacy legislation. Informed consent was obtained from all individual participants included in the study.
Not applicable
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Lee IM, Shiroma EJ, Lobelo F, et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–29.PubMedPubMedCentral Lee IM, Shiroma EJ, Lobelo F, et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–29.PubMedPubMedCentral
2.
Zurück zum Zitat Midtgaard J, Baadsgaard MT, Moller T, et al. Self-reported physical activity behaviour; exercise motivation and information among Danish adult cancer patients undergoing chemotherapy. Eur J Oncol Nurs. 2009;13(2):116–21.PubMed Midtgaard J, Baadsgaard MT, Moller T, et al. Self-reported physical activity behaviour; exercise motivation and information among Danish adult cancer patients undergoing chemotherapy. Eur J Oncol Nurs. 2009;13(2):116–21.PubMed
3.
Zurück zum Zitat Littman AJ, Tang MT, Rossing MA. Longitudinal study of recreational physical activity in breast cancer survivors. J Cancer Surviv. 2010;4(2):119–27.PubMed Littman AJ, Tang MT, Rossing MA. Longitudinal study of recreational physical activity in breast cancer survivors. J Cancer Surviv. 2010;4(2):119–27.PubMed
4.
Zurück zum Zitat Mishra SI, Scherer RW, Geigle PM, et al. Exercise interventions on health-related quality of life for cancer survivors. Cochrane Database Syst Rev. 2012;8:CD007566. Mishra SI, Scherer RW, Geigle PM, et al. Exercise interventions on health-related quality of life for cancer survivors. Cochrane Database Syst Rev. 2012;8:CD007566.
5.
Zurück zum Zitat Cramp F, Byron-Daniel J. Exercise for the management of cancer-related fatigue in adults. Cochrane Database Syst Rev. 2012;11:CD006145.PubMed Cramp F, Byron-Daniel J. Exercise for the management of cancer-related fatigue in adults. Cochrane Database Syst Rev. 2012;11:CD006145.PubMed
6.
Zurück zum Zitat Markes M, Brockow T, Resch KL. Exercise for women receiving adjuvant therapy for breast cancer. Cochrane Database Syst Rev. 2006;4:CD005001. Markes M, Brockow T, Resch KL. Exercise for women receiving adjuvant therapy for breast cancer. Cochrane Database Syst Rev. 2006;4:CD005001.
7.
Zurück zum Zitat van Waart H, Stuiver MM, van Harten WH, et al. Effect of low-intensity physical activity and moderate- to high-intensity physical exercise during adjuvant chemotherapy on physical fitness, fatigue, and chemotherapy completion rates: results of the PACES randomized clinical trial. J Clin Oncol. 2015;33(17):1918–27.PubMed van Waart H, Stuiver MM, van Harten WH, et al. Effect of low-intensity physical activity and moderate- to high-intensity physical exercise during adjuvant chemotherapy on physical fitness, fatigue, and chemotherapy completion rates: results of the PACES randomized clinical trial. J Clin Oncol. 2015;33(17):1918–27.PubMed
8.
Zurück zum Zitat Kampshoff CS, Chinapaw MJ, Brug J, et al. Randomized controlled trial of the effects of high intensity and low-to-moderate intensity exercise on physical fitness and fatigue in cancer survivors: results of the resistance and endurance exercise after ChemoTherapy (REACT) study. BMC Med. 2015;13:275.PubMedPubMedCentral Kampshoff CS, Chinapaw MJ, Brug J, et al. Randomized controlled trial of the effects of high intensity and low-to-moderate intensity exercise on physical fitness and fatigue in cancer survivors: results of the resistance and endurance exercise after ChemoTherapy (REACT) study. BMC Med. 2015;13:275.PubMedPubMedCentral
9.
Zurück zum Zitat Scott DA, Mills M, Black A, et al. Multidimensional rehabilitation programmes for adult cancer survivors. Cochrane Database Syst Rev. 2013;3:CD007730. Scott DA, Mills M, Black A, et al. Multidimensional rehabilitation programmes for adult cancer survivors. Cochrane Database Syst Rev. 2013;3:CD007730.
10.
Zurück zum Zitat Mishra SI, Scherer RW, Snyder C, Geigle PM, Berlanstein DR, Topaloglu O. Exercise interventions on health-related quality of life for people with cancer during active treatment. Cochrane Database Syst Rev. 2012;8:CD008465. Mishra SI, Scherer RW, Snyder C, Geigle PM, Berlanstein DR, Topaloglu O. Exercise interventions on health-related quality of life for people with cancer during active treatment. Cochrane Database Syst Rev. 2012;8:CD008465.
11.
Zurück zum Zitat Speck RM, Courneya KS, Masse LC, Duval S, Schmitz KH. An update of controlled physical activity trials in cancer survivors: a systematic review and meta-analysis. J Cancer Surviv. 2010;4(2):87–100.PubMed Speck RM, Courneya KS, Masse LC, Duval S, Schmitz KH. An update of controlled physical activity trials in cancer survivors: a systematic review and meta-analysis. J Cancer Surviv. 2010;4(2):87–100.PubMed
12.
Zurück zum Zitat Ingram C, Visovsky C. Exercise intervention to modify physiologic risk factors in cancer survivors. Semin Oncol Nurs. 2007;23(4):275–84.PubMed Ingram C, Visovsky C. Exercise intervention to modify physiologic risk factors in cancer survivors. Semin Oncol Nurs. 2007;23(4):275–84.PubMed
13.
Zurück zum Zitat Schmitz KH, Holtzman J, Courneya KS, Masse LC, Duval S, Kane R. Controlled physical activity trials in cancer survivors: a systematic review and meta-analysis. Cancer Epidemiol Biomark Prev. 2005;14(7):1588–95. Schmitz KH, Holtzman J, Courneya KS, Masse LC, Duval S, Kane R. Controlled physical activity trials in cancer survivors: a systematic review and meta-analysis. Cancer Epidemiol Biomark Prev. 2005;14(7):1588–95.
14.
Zurück zum Zitat Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. CMAJ. 2006;174(6):801–9.PubMedPubMedCentral Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. CMAJ. 2006;174(6):801–9.PubMedPubMedCentral
15.
Zurück zum Zitat Courneya KS, Friedenreich CM. Physical activity and cancer control. Semin Oncol Nurs. 2007;23(4):242–52.PubMed Courneya KS, Friedenreich CM. Physical activity and cancer control. Semin Oncol Nurs. 2007;23(4):242–52.PubMed
16.
Zurück zum Zitat Schmitz KH, Courneya KS, Matthews C, Demark-Wahnefried W, Galvão DA, Pinto BM, et al. American college of sports medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc. 2010;42(7):1409–26.PubMed Schmitz KH, Courneya KS, Matthews C, Demark-Wahnefried W, Galvão DA, Pinto BM, et al. American college of sports medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc. 2010;42(7):1409–26.PubMed
17.
Zurück zum Zitat McNeely ML, Campbell KL, Rowe BH, Klassen TP, Mackey JR, Courneya KS. Effects of exercise on breast cancer patients and survivors: a systematic review and meta-analysis. CMAJ. 2006;175(1):34–41.PubMedPubMedCentral McNeely ML, Campbell KL, Rowe BH, Klassen TP, Mackey JR, Courneya KS. Effects of exercise on breast cancer patients and survivors: a systematic review and meta-analysis. CMAJ. 2006;175(1):34–41.PubMedPubMedCentral
18.
Zurück zum Zitat Schwartz AL, Mori M, Gao R, Nail LM, King ME. Exercise reduces daily fatigue in women with breast cancer receiving chemotherapy. Med Sci Sports Exerc. 2001;33(5):718–23.PubMed Schwartz AL, Mori M, Gao R, Nail LM, King ME. Exercise reduces daily fatigue in women with breast cancer receiving chemotherapy. Med Sci Sports Exerc. 2001;33(5):718–23.PubMed
19.
Zurück zum Zitat Schwartz AL. Fatigue mediates the effects of exercise on quality of life. Qual Life Res. 1999;8(6):529–38.PubMed Schwartz AL. Fatigue mediates the effects of exercise on quality of life. Qual Life Res. 1999;8(6):529–38.PubMed
20.
Zurück zum Zitat Schwartz AL. Daily fatigue patterns and effect of exercise in women with breast cancer. Cancer Pract. 2000;8(1):16–24.PubMed Schwartz AL. Daily fatigue patterns and effect of exercise in women with breast cancer. Cancer Pract. 2000;8(1):16–24.PubMed
21.
Zurück zum Zitat Kolden GG, Strauman TJ, Ward A, Kuta J, Woods TE, Schneider KL, et al. A pilot study of group exercise training (GET) for women with primary breast cancer: feasibility and health benefits. Psychooncology. 2002;11(5):447–56.PubMed Kolden GG, Strauman TJ, Ward A, Kuta J, Woods TE, Schneider KL, et al. A pilot study of group exercise training (GET) for women with primary breast cancer: feasibility and health benefits. Psychooncology. 2002;11(5):447–56.PubMed
22.
Zurück zum Zitat Dimeo F, Stieglitz RD, Novelli-Fischer U, Fetscher S, Mertelsmann R, Keul J. Correlation between physical performance and fatigue in cancer patients. Ann Oncol. 1997;8(12):1251–5.PubMed Dimeo F, Stieglitz RD, Novelli-Fischer U, Fetscher S, Mertelsmann R, Keul J. Correlation between physical performance and fatigue in cancer patients. Ann Oncol. 1997;8(12):1251–5.PubMed
23.
Zurück zum Zitat Winningham ML. Strategies for managing cancer-related fatigue syndrome: a rehabilitation approach. Cancer. 2001;92(4 Suppl):988–97.PubMed Winningham ML. Strategies for managing cancer-related fatigue syndrome: a rehabilitation approach. Cancer. 2001;92(4 Suppl):988–97.PubMed
24.
Zurück zum Zitat National Comprehensive Cancer Network. Cancer-related fatigue. Clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2003;1(3):308–31. National Comprehensive Cancer Network. Cancer-related fatigue. Clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2003;1(3):308–31.
25.
Zurück zum Zitat Dimeo FC. Effects of exercise on cancer-related fatigue. Cancer. 2001;92(6 Suppl):1689–93.PubMed Dimeo FC. Effects of exercise on cancer-related fatigue. Cancer. 2001;92(6 Suppl):1689–93.PubMed
26.
Zurück zum Zitat Kampshoff CS, van Dongen JM, van Mechelen W, Schep G, Vreugdenhil A, Twisk JWR, et al. Long-term effectiveness and cost-effectiveness of high versus low-to-moderate intensity resistance and endurance exercise interventions among cancer survivors. J Cancer Surviv. 2018;12(3):417–29.PubMedPubMedCentral Kampshoff CS, van Dongen JM, van Mechelen W, Schep G, Vreugdenhil A, Twisk JWR, et al. Long-term effectiveness and cost-effectiveness of high versus low-to-moderate intensity resistance and endurance exercise interventions among cancer survivors. J Cancer Surviv. 2018;12(3):417–29.PubMedPubMedCentral
27.
Zurück zum Zitat Knols R, Aaronson NK, Uebelhart D, Fransen J, Aufdemkampe G. Physical exercise in cancer patients during and after medical treatment: a systematic review of randomized and controlled clinical trials. J Clin Oncol. 2005;23(16):3830–42.PubMed Knols R, Aaronson NK, Uebelhart D, Fransen J, Aufdemkampe G. Physical exercise in cancer patients during and after medical treatment: a systematic review of randomized and controlled clinical trials. J Clin Oncol. 2005;23(16):3830–42.PubMed
28.
Zurück zum Zitat Courneya KS, Karvinen KH, McNeely ML, et al. Predictors of adherence to supervised and unsupervised exercise in the Alberta physical activity and breast cancer prevention trial. J Phys Act Health. 2012;9(6):857–66.PubMed Courneya KS, Karvinen KH, McNeely ML, et al. Predictors of adherence to supervised and unsupervised exercise in the Alberta physical activity and breast cancer prevention trial. J Phys Act Health. 2012;9(6):857–66.PubMed
29.
Zurück zum Zitat Courneya KS. Exercise in cancer survivors: an overview of research. Med Sci Sports Exerc. 2003;35(11):1846–52.PubMed Courneya KS. Exercise in cancer survivors: an overview of research. Med Sci Sports Exerc. 2003;35(11):1846–52.PubMed
30.
Zurück zum Zitat Young-McCaughan S, Sexton DL. A retrospective investigation of the relationship between aerobic exercise and quality of life in women with breast cancer. Oncol Nurs Forum. 1991;18(4):751–7.PubMed Young-McCaughan S, Sexton DL. A retrospective investigation of the relationship between aerobic exercise and quality of life in women with breast cancer. Oncol Nurs Forum. 1991;18(4):751–7.PubMed
31.
Zurück zum Zitat Courneya KS, Friedenreich CM. Relationship between exercise pattern across the cancer experience and current quality of life in colorectal cancer survivors. J Altern Complement Med. 1997;3(3):215–26.PubMed Courneya KS, Friedenreich CM. Relationship between exercise pattern across the cancer experience and current quality of life in colorectal cancer survivors. J Altern Complement Med. 1997;3(3):215–26.PubMed
32.
Zurück zum Zitat Galvao DA, Newton RU. Review of exercise intervention studies in cancer patients. J Clin Oncol. 2005;23(4):899–909.PubMed Galvao DA, Newton RU. Review of exercise intervention studies in cancer patients. J Clin Oncol. 2005;23(4):899–909.PubMed
33.
Zurück zum Zitat Schmid D, Leitzmann MF. Association between physical activity and mortality among breast cancer and colorectal cancer survivors: a systematic review and meta-analysis. Ann Oncol. 2014;25(7):1293–311.PubMed Schmid D, Leitzmann MF. Association between physical activity and mortality among breast cancer and colorectal cancer survivors: a systematic review and meta-analysis. Ann Oncol. 2014;25(7):1293–311.PubMed
34.
Zurück zum Zitat Wu W, Guo F, Ye J, et al. Pre- and post-diagnosis physical activity is associated with survival benefits of colorectal cancer patients: a systematic review and meta-analysis. Oncotarget. 2016;7(32):52095–103.PubMedPubMedCentral Wu W, Guo F, Ye J, et al. Pre- and post-diagnosis physical activity is associated with survival benefits of colorectal cancer patients: a systematic review and meta-analysis. Oncotarget. 2016;7(32):52095–103.PubMedPubMedCentral
35.
Zurück zum Zitat Campbell KL, Winters-Stone KM, Wiskemann J, et al. Exercise guidelines for cancer survivors: consensus statement from international multidisciplinary roundtable. Med Sci Sports Exerc. 2019;51(11):2375–90.PubMed Campbell KL, Winters-Stone KM, Wiskemann J, et al. Exercise guidelines for cancer survivors: consensus statement from international multidisciplinary roundtable. Med Sci Sports Exerc. 2019;51(11):2375–90.PubMed
36.
Zurück zum Zitat Patel AV, Friedenreich CM, Moore SC, et al. American College of Sports Medicine roundtable report on physical activity, sedentary behavior, and cancer prevention and control. Med Sci Sports Exerc. 2019;51(11):2391–402.PubMedPubMedCentral Patel AV, Friedenreich CM, Moore SC, et al. American College of Sports Medicine roundtable report on physical activity, sedentary behavior, and cancer prevention and control. Med Sci Sports Exerc. 2019;51(11):2391–402.PubMedPubMedCentral
37.
Zurück zum Zitat van den Berg JP, Velthuis MJ, Gijsen BC, Lindeman E, van der Pol MA, Hillen HF. Guideline “Cancer rehabilitation”. Ned Tijdschr Geneeskd. 2011;155(51):A4104.PubMed van den Berg JP, Velthuis MJ, Gijsen BC, Lindeman E, van der Pol MA, Hillen HF. Guideline “Cancer rehabilitation”. Ned Tijdschr Geneeskd. 2011;155(51):A4104.PubMed
38.
Zurück zum Zitat (NCCO) NCCO. Cancer surivorship care; Cancer clinical practice guidelines. 2018. (NCCO) NCCO. Cancer surivorship care; Cancer clinical practice guidelines. 2018.
39.
Zurück zum Zitat Runowicz CD, Leach CR, Henry NL, et al. American Cancer Society/American Society of Clinical Oncology Breast Cancer Survivorship Care Guideline. J Clin Oncol. 2016;34(6):611–35.PubMed Runowicz CD, Leach CR, Henry NL, et al. American Cancer Society/American Society of Clinical Oncology Breast Cancer Survivorship Care Guideline. J Clin Oncol. 2016;34(6):611–35.PubMed
40.
Zurück zum Zitat Resnick MJ, Lacchetti C, Penson DF. Prostate cancer survivorship care guidelines: American Society of Clinical Oncology practice guideline endorsement. J Oncol Pract. 2015;11(3):e445–9.PubMed Resnick MJ, Lacchetti C, Penson DF. Prostate cancer survivorship care guidelines: American Society of Clinical Oncology practice guideline endorsement. J Oncol Pract. 2015;11(3):e445–9.PubMed
41.
Zurück zum Zitat El-Shami K, Oeffinger KC, Erb NL, et al. American Cancer Society colorectal cancer survivorship care guidelines. CA Cancer J Clin. 2015;65(6):428–55.PubMedPubMedCentral El-Shami K, Oeffinger KC, Erb NL, et al. American Cancer Society colorectal cancer survivorship care guidelines. CA Cancer J Clin. 2015;65(6):428–55.PubMedPubMedCentral
42.
Zurück zum Zitat Rock CL, Doyle C, Demark-Wahnefried W, Meyerhardt J, Courneya KS, Schwartz AL, et al. Nutrition and physical activity guidelines for cancer survivors. CA Cancer J Clin. 2012;62(4):243–74.PubMed Rock CL, Doyle C, Demark-Wahnefried W, Meyerhardt J, Courneya KS, Schwartz AL, et al. Nutrition and physical activity guidelines for cancer survivors. CA Cancer J Clin. 2012;62(4):243–74.PubMed
43.
Zurück zum Zitat Stout NL, Silver JK, Raj VS, Rowland J, Gerber L, Cheville A, et al. Toward a national initiative in cancer rehabilitation: recommendations from a subject matter expert group. Arch Phys Med Rehabil. 2016;97(11):2006–15.PubMed Stout NL, Silver JK, Raj VS, Rowland J, Gerber L, Cheville A, et al. Toward a national initiative in cancer rehabilitation: recommendations from a subject matter expert group. Arch Phys Med Rehabil. 2016;97(11):2006–15.PubMed
44.
Zurück zum Zitat NHS. Innovation to implementation: stratified pathways of care for people living with or beyond cancer. A ‘how to guide’. 2016. NHS. Innovation to implementation: stratified pathways of care for people living with or beyond cancer. A ‘how to guide’. 2016.
45.
Zurück zum Zitat Wiedenbein L, Kristiansen M, Adamsen L, Hjort D, Hendriksen C. Assessment of rehabilitation needs in colorectal cancer treatment: results from a mixed audit and qualitative study in Denmark. Acta Oncol. 2016;55(6):705–11.PubMed Wiedenbein L, Kristiansen M, Adamsen L, Hjort D, Hendriksen C. Assessment of rehabilitation needs in colorectal cancer treatment: results from a mixed audit and qualitative study in Denmark. Acta Oncol. 2016;55(6):705–11.PubMed
46.
Zurück zum Zitat Tvede CF, Brandstrup B, Engholm G, Tonnesen H. Potential number of rehabilitated cancer patients in Denmark—an estimate. Ugeskr Laeger. 2003;165(2):123–8.PubMed Tvede CF, Brandstrup B, Engholm G, Tonnesen H. Potential number of rehabilitated cancer patients in Denmark—an estimate. Ugeskr Laeger. 2003;165(2):123–8.PubMed
47.
Zurück zum Zitat Thorsen L, Gjerset GM, Loge JH, Kiserud CE, Skovlund E, Fløtten T, et al. Cancer patients’ needs for rehabilitation services. Acta Oncol. 2011;50(2):212–22.PubMed Thorsen L, Gjerset GM, Loge JH, Kiserud CE, Skovlund E, Fløtten T, et al. Cancer patients’ needs for rehabilitation services. Acta Oncol. 2011;50(2):212–22.PubMed
48.
Zurück zum Zitat Holm LV, Hansen DG, Johansen C, Vedsted P, Larsen PV, Kragstrup J, et al. Participation in cancer rehabilitation and unmet needs: a population-based cohort study. Support Care Cancer. 2012;20(11):2913–24.PubMedPubMedCentral Holm LV, Hansen DG, Johansen C, Vedsted P, Larsen PV, Kragstrup J, et al. Participation in cancer rehabilitation and unmet needs: a population-based cohort study. Support Care Cancer. 2012;20(11):2913–24.PubMedPubMedCentral
49.
Zurück zum Zitat Stevinson C, Fox KR. Feasibility of an exercise rehabilitation programme for cancer patients. Eur J Cancer Care (Engl). 2006;15(4):386–96. Stevinson C, Fox KR. Feasibility of an exercise rehabilitation programme for cancer patients. Eur J Cancer Care (Engl). 2006;15(4):386–96.
50.
Zurück zum Zitat Courneya KS, Mackey JR, Bell GJ, Jones LW, Field CJ, Fairey AS. Randomized controlled trial of exercise training in postmenopausal breast cancer survivors: cardiopulmonary and quality of life outcomes. J Clin Oncol. 2003;21(9):1660–8.PubMed Courneya KS, Mackey JR, Bell GJ, Jones LW, Field CJ, Fairey AS. Randomized controlled trial of exercise training in postmenopausal breast cancer survivors: cardiopulmonary and quality of life outcomes. J Clin Oncol. 2003;21(9):1660–8.PubMed
51.
Zurück zum Zitat Segal R, Evans W, Johnson D, et al. Structured exercise improves physical functioning in women with stages I and II breast cancer: results of a randomized controlled trial. J Clin Oncol. 2001;19(3):657–65.PubMed Segal R, Evans W, Johnson D, et al. Structured exercise improves physical functioning in women with stages I and II breast cancer: results of a randomized controlled trial. J Clin Oncol. 2001;19(3):657–65.PubMed
52.
Zurück zum Zitat Segal RJ, Reid RD, Courneya KS, et al. Resistance exercise in men receiving androgen deprivation therapy for prostate cancer. J Clin Oncol. 2003;21(9):1653–9.PubMed Segal RJ, Reid RD, Courneya KS, et al. Resistance exercise in men receiving androgen deprivation therapy for prostate cancer. J Clin Oncol. 2003;21(9):1653–9.PubMed
53.
Zurück zum Zitat Canestraro A, Nakhle A, Stack M, Strong K, Wright A, Beauchamp M, et al. Oncology rehabilitation provision and practice patterns across Canada. Physiother Can. 2013;65(1):94–102.PubMedPubMedCentral Canestraro A, Nakhle A, Stack M, Strong K, Wright A, Beauchamp M, et al. Oncology rehabilitation provision and practice patterns across Canada. Physiother Can. 2013;65(1):94–102.PubMedPubMedCentral
54.
Zurück zum Zitat Segal R, Evans W, Johnson D, et al. Oncology Rehabilitation Program at the Ottawa Regional Cancer Centre: program description. CMAJ. 1999;161(3):282–5.PubMedPubMedCentral Segal R, Evans W, Johnson D, et al. Oncology Rehabilitation Program at the Ottawa Regional Cancer Centre: program description. CMAJ. 1999;161(3):282–5.PubMedPubMedCentral
55.
Zurück zum Zitat Demark-Wahnefried W. Print-to-practice: designing tailored print materials to improve cancer survivors’ dietary and exercise practices in the FRESH START trial. Nutr Today. 2007;42(3):131–8.PubMedPubMedCentral Demark-Wahnefried W. Print-to-practice: designing tailored print materials to improve cancer survivors’ dietary and exercise practices in the FRESH START trial. Nutr Today. 2007;42(3):131–8.PubMedPubMedCentral
56.
Zurück zum Zitat Grabois M. Integrating cancer rehabilitation into medical care at a cancer hospital. Cancer. 2001;92(4 Suppl):1055–7.PubMed Grabois M. Integrating cancer rehabilitation into medical care at a cancer hospital. Cancer. 2001;92(4 Suppl):1055–7.PubMed
57.
Zurück zum Zitat Schmidt KD. Cancer rehabilitation services in a tertiary care center. Cancer. 2001;92(4 Suppl):1053–4.PubMed Schmidt KD. Cancer rehabilitation services in a tertiary care center. Cancer. 2001;92(4 Suppl):1053–4.PubMed
58.
Zurück zum Zitat IJsbrandy C, Ottevanger PB, Tsekou Diogeni M, Gerritsen WR, van Harten WH, Hermens RPMG. Review: effectiveness of implementation strategies to increase physical activity uptake during and after cancer treatment. Crit Rev Oncol Hematol. 2018;122:157–63. IJsbrandy C, Ottevanger PB, Tsekou Diogeni M, Gerritsen WR, van Harten WH, Hermens RPMG. Review: effectiveness of implementation strategies to increase physical activity uptake during and after cancer treatment. Crit Rev Oncol Hematol. 2018;122:157–63.
59.
Zurück zum Zitat Hermelink K, Hohn H, Hasmuller S, et al. Brief distress screening in clinical practice: does it help to effectively allocate psycho-oncological support to female cancer inpatients? Breast Care (Basel). 2014;9(2):129–33. Hermelink K, Hohn H, Hasmuller S, et al. Brief distress screening in clinical practice: does it help to effectively allocate psycho-oncological support to female cancer inpatients? Breast Care (Basel). 2014;9(2):129–33.
60.
Zurück zum Zitat Chambers SK, Zajdlewicz L, Youlden DR, Holland JC, Dunn J. The validity of the distress thermometer in prostate cancer populations. Psychooncology. 2014;23(2):195–203.PubMed Chambers SK, Zajdlewicz L, Youlden DR, Holland JC, Dunn J. The validity of the distress thermometer in prostate cancer populations. Psychooncology. 2014;23(2):195–203.PubMed
61.
62.
Zurück zum Zitat Grol R, Grimshaw J. From best evidence to best practice: effective implementation of change in patients’ care. Lancet. 2003;362(9391):1225–30.PubMed Grol R, Grimshaw J. From best evidence to best practice: effective implementation of change in patients’ care. Lancet. 2003;362(9391):1225–30.PubMed
63.
Zurück zum Zitat Davis DA, Taylor-Vaisey A. Translating guidelines into practice. A systematic review of theoretic concepts, practical experience and research evidence in the adoption of clinical practice guidelines. CMAJ. 1997;157(4):408–16.PubMedPubMedCentral Davis DA, Taylor-Vaisey A. Translating guidelines into practice. A systematic review of theoretic concepts, practical experience and research evidence in the adoption of clinical practice guidelines. CMAJ. 1997;157(4):408–16.PubMedPubMedCentral
64.
Zurück zum Zitat Bero LA, Grilli R, Grimshaw JM, Harvey E, Oxman AD, Thomson MA. Closing the gap between research and practice: an overview of systematic reviews of interventions to promote the implementation of research findings. The Cochrane Effective Practice and Organization of Care Review Group. BMJ. 1998;317(7156):465–8.PubMedPubMedCentral Bero LA, Grilli R, Grimshaw JM, Harvey E, Oxman AD, Thomson MA. Closing the gap between research and practice: an overview of systematic reviews of interventions to promote the implementation of research findings. The Cochrane Effective Practice and Organization of Care Review Group. BMJ. 1998;317(7156):465–8.PubMedPubMedCentral
65.
Zurück zum Zitat Berwick DM. Developing and testing changes in delivery of care. Ann Intern Med. 1998;128(8):651–6.PubMed Berwick DM. Developing and testing changes in delivery of care. Ann Intern Med. 1998;128(8):651–6.PubMed
66.
Zurück zum Zitat Grimshaw JM, Shirran L, Thomas R, Mowatt G, Fraser C, Bero L, et al. Changing provider behavior: an overview of systematic reviews of interventions. Med Care. 2001;39(8 Suppl 2):II2–45.PubMed Grimshaw JM, Shirran L, Thomas R, Mowatt G, Fraser C, Bero L, et al. Changing provider behavior: an overview of systematic reviews of interventions. Med Care. 2001;39(8 Suppl 2):II2–45.PubMed
67.
Zurück zum Zitat Kitson A, Harvey G, McCormack B. Enabling the implementation of evidence based practice: a conceptual framework. Qual Health Care. 1998;7(3):149–58.PubMedPubMedCentral Kitson A, Harvey G, McCormack B. Enabling the implementation of evidence based practice: a conceptual framework. Qual Health Care. 1998;7(3):149–58.PubMedPubMedCentral
68.
Zurück zum Zitat Moulding NT, Silagy CA, Weller DP. A framework for effective management of change in clinical practice: dissemination and implementation of clinical practice guidelines. Qual Health Care. 1999;8(3):177–83.PubMedPubMedCentral Moulding NT, Silagy CA, Weller DP. A framework for effective management of change in clinical practice: dissemination and implementation of clinical practice guidelines. Qual Health Care. 1999;8(3):177–83.PubMedPubMedCentral
69.
Zurück zum Zitat National Health and Medical Research Council (NHMRC). How to put the evidence into practice: implementation and dissemination strategies. Canberra: Commonwealth of Australia; 2000. National Health and Medical Research Council (NHMRC). How to put the evidence into practice: implementation and dissemination strategies. Canberra: Commonwealth of Australia; 2000.
70.
Zurück zum Zitat Grol R. Improving the quality of medical care: building bridges among professional pride, payer profit, and patient satisfaction. JAMA. 2001;286(20):2578–85.PubMed Grol R. Improving the quality of medical care: building bridges among professional pride, payer profit, and patient satisfaction. JAMA. 2001;286(20):2578–85.PubMed
71.
Zurück zum Zitat Kroenke K, Taylor-Vaisey A, Dietrich AJ, Oxman TE. Interventions to improve provider diagnosis and treatment of mental disorders in primary care. A critical review of the literature. Psychosomatics. 2000;41(1):39–52.PubMed Kroenke K, Taylor-Vaisey A, Dietrich AJ, Oxman TE. Interventions to improve provider diagnosis and treatment of mental disorders in primary care. A critical review of the literature. Psychosomatics. 2000;41(1):39–52.PubMed
72.
Zurück zum Zitat Wensing M, Bosch M, Grol R. Developing and selecting interventions for translating knowledge to action. CMAJ. 2010;182(2):E85–8.PubMedPubMedCentral Wensing M, Bosch M, Grol R. Developing and selecting interventions for translating knowledge to action. CMAJ. 2010;182(2):E85–8.PubMedPubMedCentral
73.
Zurück zum Zitat Grol R, Wensing M. What drives change? Barriers to and incentives for achieving evidence-based practice. Med J Aust. 2004;180(6 Suppl):S57–60.PubMed Grol R, Wensing M. What drives change? Barriers to and incentives for achieving evidence-based practice. Med J Aust. 2004;180(6 Suppl):S57–60.PubMed
74.
Zurück zum Zitat Baker R, Camosso-Stefinovic J, Gillies C, et al. Tailored interventions to overcome identified barriers to change: effects on professional practice and health care outcomes. Cochrane Database Syst Rev. 2010;(3):Cd005470. Baker R, Camosso-Stefinovic J, Gillies C, et al. Tailored interventions to overcome identified barriers to change: effects on professional practice and health care outcomes. Cochrane Database Syst Rev. 2010;(3):Cd005470.
75.
Zurück zum Zitat IJsbrandy C, Ottevanger PB, Groen WG, Gerritsen WR, van Harten WH, Hermens RP. Study protocol: an evaluation of the effectiveness, experiences and costs of a patient-directed strategy compared with a multi-faceted strategy to implement physical cancer rehabilitation programmes for cancer survivors in a European healthcare system; a controlled before and after study. Implement Sci. 2015;10:128.PubMedPubMedCentral IJsbrandy C, Ottevanger PB, Groen WG, Gerritsen WR, van Harten WH, Hermens RP. Study protocol: an evaluation of the effectiveness, experiences and costs of a patient-directed strategy compared with a multi-faceted strategy to implement physical cancer rehabilitation programmes for cancer survivors in a European healthcare system; a controlled before and after study. Implement Sci. 2015;10:128.PubMedPubMedCentral
76.
Zurück zum Zitat Grol R, Wensing M, Eccles M. Improving patient care: the implementation of change in clinical practice. 2005. Grol R, Wensing M, Eccles M. Improving patient care: the implementation of change in clinical practice. 2005.
77.
Zurück zum Zitat IJsbrandy C, Hermens RPMG, Boerboom LWM, Gerritsen WR, van Harten WH, Ottevanger PB. Implementing physical activity programs for patients with cancer in current practice: patients’ experienced barriers and facilitators. J Cancer Surviv. 2019;13(5):703–12.PubMedPubMedCentral IJsbrandy C, Hermens RPMG, Boerboom LWM, Gerritsen WR, van Harten WH, Ottevanger PB. Implementing physical activity programs for patients with cancer in current practice: patients’ experienced barriers and facilitators. J Cancer Surviv. 2019;13(5):703–12.PubMedPubMedCentral
78.
Zurück zum Zitat IJsbrandy C, van Harten WH, Gerritsen WR, Hermens R, Ottevanger PB. Healthcare professionals’ perspectives of barriers and facilitators in implementing physical activity programmes delivered to cancer survivors in a shared-care model: a qualitative study. Support Care Cancer. 2020;28(7):3429–40. IJsbrandy C, van Harten WH, Gerritsen WR, Hermens R, Ottevanger PB. Healthcare professionals’ perspectives of barriers and facilitators in implementing physical activity programmes delivered to cancer survivors in a shared-care model: a qualitative study. Support Care Cancer. 2020;28(7):3429–40.
79.
Zurück zum Zitat Irwin ML. Physical activity interventions for cancer survivors. Br J Sports Med. 2009;43(1):32–8.PubMed Irwin ML. Physical activity interventions for cancer survivors. Br J Sports Med. 2009;43(1):32–8.PubMed
80.
Zurück zum Zitat Fine JM, Fine MJ, Galusha D, Petrillo M, Meehan TP. Patient and hospital characteristics associated with recommended processes of care for elderly patients hospitalized with pneumonia: results from the medicare quality indicator system pneumonia module. Arch Intern Med. 2002;162(7):827–33.PubMed Fine JM, Fine MJ, Galusha D, Petrillo M, Meehan TP. Patient and hospital characteristics associated with recommended processes of care for elderly patients hospitalized with pneumonia: results from the medicare quality indicator system pneumonia module. Arch Intern Med. 2002;162(7):827–33.PubMed
81.
Zurück zum Zitat Schouten JA, Hulscher ME, Kullberg BJ, Cox A, Gyssens IC, van der Meer JW, et al. Understanding variation in quality of antibiotic use for community-acquired pneumonia: effect of patient, professional and hospital factors. J Antimicrob Chemother. 2005;56(3):575–82.PubMed Schouten JA, Hulscher ME, Kullberg BJ, Cox A, Gyssens IC, van der Meer JW, et al. Understanding variation in quality of antibiotic use for community-acquired pneumonia: effect of patient, professional and hospital factors. J Antimicrob Chemother. 2005;56(3):575–82.PubMed
82.
Zurück zum Zitat Hermens RP, Haagen EC, Nelen WL, et al. Patient and hospital characteristics associated with variation in guideline adherence in intrauterine insemination care. Int J Qual Health Care. 2011;23(5):574–82.PubMed Hermens RP, Haagen EC, Nelen WL, et al. Patient and hospital characteristics associated with variation in guideline adherence in intrauterine insemination care. Int J Qual Health Care. 2011;23(5):574–82.PubMed
83.
Zurück zum Zitat Stienen JJ, Hermens RP, Wennekes L, et al. Variation in guideline adherence in non-Hodgkin’s lymphoma care: impact of patient and hospital characteristics. BMC Cancer. 2015;15:578.PubMedPubMedCentral Stienen JJ, Hermens RP, Wennekes L, et al. Variation in guideline adherence in non-Hodgkin’s lymphoma care: impact of patient and hospital characteristics. BMC Cancer. 2015;15:578.PubMedPubMedCentral
84.
Zurück zum Zitat van den Boogaard NM, Musters AM, Bruhl SW, Tankens T, Kremer JAM, Mol BWJ, et al. Tailored expectant management: a nationwide survey to quantify patients’ and professionals’ barriers and facilitators. Hum Reprod. 2012;27(4):1050–7.PubMed van den Boogaard NM, Musters AM, Bruhl SW, Tankens T, Kremer JAM, Mol BWJ, et al. Tailored expectant management: a nationwide survey to quantify patients’ and professionals’ barriers and facilitators. Hum Reprod. 2012;27(4):1050–7.PubMed
85.
Zurück zum Zitat van den Boogaard NM, Oude Rengerink K, Steures P, Bossuyt PM, Hompes PGA, van der Veen F, et al. Tailored expectant management: risk factors for non-adherence. Hum Reprod. 2011;26(7):1784–9.PubMed van den Boogaard NM, Oude Rengerink K, Steures P, Bossuyt PM, Hompes PGA, van der Veen F, et al. Tailored expectant management: risk factors for non-adherence. Hum Reprod. 2011;26(7):1784–9.PubMed
86.
Zurück zum Zitat Baker R, Camosso-Stefinovic J, Gillies C, et al. Tailored interventions to address determinants of practice. Cochrane Database Syst Rev. 2015;4:Cd005470. Baker R, Camosso-Stefinovic J, Gillies C, et al. Tailored interventions to address determinants of practice. Cochrane Database Syst Rev. 2015;4:Cd005470.
87.
Zurück zum Zitat Medisch specialistische revalidatie bij oncologie Landelijke richtlijn, Versie: 2.0. Integraal kankercentrum Nederland (IKNL); 01-03-2018 2018. Medisch specialistische revalidatie bij oncologie Landelijke richtlijn, Versie: 2.0. Integraal kankercentrum Nederland (IKNL); 01-03-2018 2018.
88.
Zurück zum Zitat Cancer survivorship care nation-wide guideline, version: 1.0. 17-02-2011 2011. Cancer survivorship care nation-wide guideline, version: 1.0. 17-02-2011 2011.
89.
Zurück zum Zitat Hermens RP, Ouwens MM, Vonk-Okhuijsen SY, et al. Development of quality indicators for diagnosis and treatment of patients with non-small cell lung cancer: a first step toward implementing a multidisciplinary, evidence-based guideline. Lung Cancer. 2006;54(1):117–24.PubMed Hermens RP, Ouwens MM, Vonk-Okhuijsen SY, et al. Development of quality indicators for diagnosis and treatment of patients with non-small cell lung cancer: a first step toward implementing a multidisciplinary, evidence-based guideline. Lung Cancer. 2006;54(1):117–24.PubMed
90.
Zurück zum Zitat Mourad SM, Hermens RP, Nelen WL, Braat DD, Grol RP, Kremer JA. Guideline-based development of quality indicators for subfertility care. Hum Reprod. 2007;22(10):2665–72.PubMed Mourad SM, Hermens RP, Nelen WL, Braat DD, Grol RP, Kremer JA. Guideline-based development of quality indicators for subfertility care. Hum Reprod. 2007;22(10):2665–72.PubMed
91.
Zurück zum Zitat Tuinman MA, Gazendam-Donofrio SM, Hoekstra-Weebers JE. Screening and referral for psychosocial distress in oncologic practice: use of the Distress Thermometer. Cancer. 2008;113(4):870–8.PubMed Tuinman MA, Gazendam-Donofrio SM, Hoekstra-Weebers JE. Screening and referral for psychosocial distress in oncologic practice: use of the Distress Thermometer. Cancer. 2008;113(4):870–8.PubMed
92.
Zurück zum Zitat Holland JC, Bultz BD. The NCCN guideline for distress management: a case for making distress the sixth vital sign. J Natl Compr Cancer Netw. 2007;5(1):3–7. Holland JC, Bultz BD. The NCCN guideline for distress management: a case for making distress the sixth vital sign. J Natl Compr Cancer Netw. 2007;5(1):3–7.
93.
Zurück zum Zitat Aaronson NK, Ahmedzai S, Bergman B, et al. The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J Natl Cancer Inst. 1993;85(5):365–76. Aaronson NK, Ahmedzai S, Bergman B, et al. The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J Natl Cancer Inst. 1993;85(5):365–76.
94.
Zurück zum Zitat Giesinger JM, Kieffer JM, Fayers PM, Groenvold M, Petersen MA, Scott NW, et al. Replication and validation of higher order models demonstrated that a summary score for the EORTC QLQ-C30 is robust. J Clin Epidemiol. 2016;69:79–88.PubMed Giesinger JM, Kieffer JM, Fayers PM, Groenvold M, Petersen MA, Scott NW, et al. Replication and validation of higher order models demonstrated that a summary score for the EORTC QLQ-C30 is robust. J Clin Epidemiol. 2016;69:79–88.PubMed
95.
Zurück zum Zitat Smets EM, Garssen B, Cull A, de Haes JC. Application of the multidimensional fatigue inventory (MFI-20) in cancer patients receiving radiotherapy. Br J Cancer. 1996;73(2):241–5.PubMedPubMedCentral Smets EM, Garssen B, Cull A, de Haes JC. Application of the multidimensional fatigue inventory (MFI-20) in cancer patients receiving radiotherapy. Br J Cancer. 1996;73(2):241–5.PubMedPubMedCentral
96.
Zurück zum Zitat Smets EM, Garssen B, Bonke B, De Haes JC. The multidimensional fatigue inventory (MFI) psychometric qualities of an instrument to assess fatigue. J Psychosom Res. 1995;39(3):315–25.PubMed Smets EM, Garssen B, Bonke B, De Haes JC. The multidimensional fatigue inventory (MFI) psychometric qualities of an instrument to assess fatigue. J Psychosom Res. 1995;39(3):315–25.PubMed
97.
Zurück zum Zitat Hibbard JH, Stockard J, Mahoney ER, Tusler M. Development of the patient activation measure (PAM): conceptualizing and measuring activation in patients and consumers. Health Serv Res. 2004;39(4 Pt 1):1005–26.PubMedPubMedCentral Hibbard JH, Stockard J, Mahoney ER, Tusler M. Development of the patient activation measure (PAM): conceptualizing and measuring activation in patients and consumers. Health Serv Res. 2004;39(4 Pt 1):1005–26.PubMedPubMedCentral
98.
Zurück zum Zitat Hibbard JH, Mahoney ER, Stockard J, Tusler M. Development and testing of a short form of the patient activation measure. Health Serv Res. 2005;40(6 Pt 1):1918–30.PubMedPubMedCentral Hibbard JH, Mahoney ER, Stockard J, Tusler M. Development and testing of a short form of the patient activation measure. Health Serv Res. 2005;40(6 Pt 1):1918–30.PubMedPubMedCentral
99.
Zurück zum Zitat Gotz A, Kroner A, Jenewein J, Spirig R. Evaluation of the adherence of distress screening with the distress thermometer in cancer patients 4 years after implementation. Support Care Cancer. 2019;27(8):2799–807. Gotz A, Kroner A, Jenewein J, Spirig R. Evaluation of the adherence of distress screening with the distress thermometer in cancer patients 4 years after implementation. Support Care Cancer. 2019;27(8):2799–807.
100.
Zurück zum Zitat Ouwens MM, Hermens RR, Termeer RA, et al. Quality of integrated care for patients with nonsmall cell lung cancer: variations and determinants of care. Cancer. 2007;110(8):1782–90.PubMed Ouwens MM, Hermens RR, Termeer RA, et al. Quality of integrated care for patients with nonsmall cell lung cancer: variations and determinants of care. Cancer. 2007;110(8):1782–90.PubMed
101.
Zurück zum Zitat Mathoulin-Pelissier S, Becouarn Y, Belleannee G, et al. Quality indicators for colorectal cancer surgery and care according to patient-, tumor-, and hospital-related factors. BMC Cancer. 2012;12:297.PubMedPubMedCentral Mathoulin-Pelissier S, Becouarn Y, Belleannee G, et al. Quality indicators for colorectal cancer surgery and care according to patient-, tumor-, and hospital-related factors. BMC Cancer. 2012;12:297.PubMedPubMedCentral
102.
Zurück zum Zitat Schroeck FR, Kaufman SR, Jacobs BL, Skolarus TA, Hollingsworth JM, Shahinian VB, et al. Regional variation in quality of prostate cancer care. J Urol. 2014;191(4):957–62.PubMed Schroeck FR, Kaufman SR, Jacobs BL, Skolarus TA, Hollingsworth JM, Shahinian VB, et al. Regional variation in quality of prostate cancer care. J Urol. 2014;191(4):957–62.PubMed
103.
Zurück zum Zitat Sacerdote C, Baldi I, Bertetto O, et al. Hospital factors and patient characteristics in the treatment of colorectal cancer: a population based study. BMC Public Health. 2012;12:775.PubMedPubMedCentral Sacerdote C, Baldi I, Bertetto O, et al. Hospital factors and patient characteristics in the treatment of colorectal cancer: a population based study. BMC Public Health. 2012;12:775.PubMedPubMedCentral
104.
Zurück zum Zitat Oksbjerg Dalton S, Halgren Olsen M, Moustsen IR, Wedell Andersen C, Vibe-Petersen J, Johansen C. Socioeconomic position, referral and attendance to rehabilitation after a cancer diagnosis: a population-based study in Copenhagen, Denmark 2010–2015. Acta Oncol. 2019;58(5):730–6. Oksbjerg Dalton S, Halgren Olsen M, Moustsen IR, Wedell Andersen C, Vibe-Petersen J, Johansen C. Socioeconomic position, referral and attendance to rehabilitation after a cancer diagnosis: a population-based study in Copenhagen, Denmark 2010–2015. Acta Oncol. 2019;58(5):730–6.
105.
Zurück zum Zitat Moustsen IR, Larsen SB, Vibe-Petersen J, Trier K, Bidstrup PE, Andersen KK, et al. Social position and referral to rehabilitation among cancer patients. Acta Oncol. 2015;54(5):720–6.PubMed Moustsen IR, Larsen SB, Vibe-Petersen J, Trier K, Bidstrup PE, Andersen KK, et al. Social position and referral to rehabilitation among cancer patients. Acta Oncol. 2015;54(5):720–6.PubMed
106.
Zurück zum Zitat Stone CR, Courneya KS, McGregor SE, Li H, Friedenreich CM. Determinants of changes in physical activity from pre-diagnosis to post-diagnosis in a cohort of prostate cancer survivors. Support Care Cancer. 2018. Stone CR, Courneya KS, McGregor SE, Li H, Friedenreich CM. Determinants of changes in physical activity from pre-diagnosis to post-diagnosis in a cohort of prostate cancer survivors. Support Care Cancer. 2018.
107.
Zurück zum Zitat Razmjou H, Lincoln S, Macritchie I, Richards RR, Medeiros D, Elmaraghy A. Sex and gender disparity in pathology, disability, referral pattern, and wait time for surgery in workers with shoulder injury. BMC Musculoskelet Disord. 2016;17(1):401.PubMedPubMedCentral Razmjou H, Lincoln S, Macritchie I, Richards RR, Medeiros D, Elmaraghy A. Sex and gender disparity in pathology, disability, referral pattern, and wait time for surgery in workers with shoulder injury. BMC Musculoskelet Disord. 2016;17(1):401.PubMedPubMedCentral
108.
Zurück zum Zitat Fowler RA, Sabur N, Li P, et al. Sex- and age-based differences in the delivery and outcomes of critical care. CMAJ. 2007;177(12):1513–9.PubMedPubMedCentral Fowler RA, Sabur N, Li P, et al. Sex- and age-based differences in the delivery and outcomes of critical care. CMAJ. 2007;177(12):1513–9.PubMedPubMedCentral
109.
Zurück zum Zitat Holm LV, Hansen DG, Larsen PV, Johansen C, Vedsted P, Bergholdt SH, et al. Social inequality in cancer rehabilitation: a population-based cohort study. Acta Oncol. 2013;52(2):410–22.PubMed Holm LV, Hansen DG, Larsen PV, Johansen C, Vedsted P, Bergholdt SH, et al. Social inequality in cancer rehabilitation: a population-based cohort study. Acta Oncol. 2013;52(2):410–22.PubMed
110.
Zurück zum Zitat Addis ME, Mahalik JR. Men, masculinity, and the contexts of help seeking. Am Psychol. 2003;58(1):5–14.PubMed Addis ME, Mahalik JR. Men, masculinity, and the contexts of help seeking. Am Psychol. 2003;58(1):5–14.PubMed
111.
Zurück zum Zitat Handberg C, Lomborg K, Nielsen CV, Oliffe JL, Midtgaard J. Understanding male cancer patients’ barriers to participating in cancer rehabilitation. Eur J Cancer Care (Engl). 2015;24(6):801–11. Handberg C, Lomborg K, Nielsen CV, Oliffe JL, Midtgaard J. Understanding male cancer patients’ barriers to participating in cancer rehabilitation. Eur J Cancer Care (Engl). 2015;24(6):801–11.
112.
Zurück zum Zitat Cecil R, Mc Caughan E, Parahoo K. ‘It’s hard to take because I am a man’s man’: an ethnographic exploration of cancer and masculinity. Eur J Cancer Care (Engl). 2010;19(4):501–9. Cecil R, Mc Caughan E, Parahoo K. ‘It’s hard to take because I am a man’s man’: an ethnographic exploration of cancer and masculinity. Eur J Cancer Care (Engl). 2010;19(4):501–9.
113.
Zurück zum Zitat Garrouste-Orgeas M, Montuclard L, Timsit JF, Reignier J, Desmettre T, Karoubi P, et al. Predictors of intensive care unit refusal in French intensive care units: a multiple-center study. Crit Care Med. 2005;33(4):750–5.PubMed Garrouste-Orgeas M, Montuclard L, Timsit JF, Reignier J, Desmettre T, Karoubi P, et al. Predictors of intensive care unit refusal in French intensive care units: a multiple-center study. Crit Care Med. 2005;33(4):750–5.PubMed
114.
Zurück zum Zitat Romo H, Amaral AC, Vincent JL. Effect of patient sex on intensive care unit survival. Arch Intern Med. 2004;164(1):61–5.PubMed Romo H, Amaral AC, Vincent JL. Effect of patient sex on intensive care unit survival. Arch Intern Med. 2004;164(1):61–5.PubMed
115.
Zurück zum Zitat Raine R, Goldfrad C, Rowan K, Black N. Influence of patient gender on admission to intensive care. J Epidemiol Community Health. 2002;56(6):418–23.PubMedPubMedCentral Raine R, Goldfrad C, Rowan K, Black N. Influence of patient gender on admission to intensive care. J Epidemiol Community Health. 2002;56(6):418–23.PubMedPubMedCentral
116.
Zurück zum Zitat The L. GLOBOCAN 2018: counting the toll of cancer. Lancet. 2018;392(10152):985. The L. GLOBOCAN 2018: counting the toll of cancer. Lancet. 2018;392(10152):985.
117.
Zurück zum Zitat Booij JC, Zegers M, Evers PM, Hendriks M, Delnoij DM, Rademakers JJ. Improving cancer patient care: development of a generic cancer consumer quality index questionnaire for cancer patients. BMC Cancer. 2013;13:203.PubMedPubMedCentral Booij JC, Zegers M, Evers PM, Hendriks M, Delnoij DM, Rademakers JJ. Improving cancer patient care: development of a generic cancer consumer quality index questionnaire for cancer patients. BMC Cancer. 2013;13:203.PubMedPubMedCentral
121.
Zurück zum Zitat Courneya KSVJ, Gill S, et al. Update on the colon health and life-long exercise change trial: a phase III study of the impact of an exercise program on disease-free survival in colon cancer survivors. Curr Colorectal Cancer Rep. 2014;10:321–8. Courneya KSVJ, Gill S, et al. Update on the colon health and life-long exercise change trial: a phase III study of the impact of an exercise program on disease-free survival in colon cancer survivors. Curr Colorectal Cancer Rep. 2014;10:321–8.
122.
Zurück zum Zitat Eyl RE, Xie K, Koch-Gallenkamp L, Brenner H, Arndt V. Quality of life and physical activity in long-term (>/=5 years post-diagnosis) colorectal cancer survivors—systematic review. Health Qual Life Outcomes. 2018;16(1):112.PubMedPubMedCentral Eyl RE, Xie K, Koch-Gallenkamp L, Brenner H, Arndt V. Quality of life and physical activity in long-term (>/=5 years post-diagnosis) colorectal cancer survivors—systematic review. Health Qual Life Outcomes. 2018;16(1):112.PubMedPubMedCentral
123.
Zurück zum Zitat Des Guetz G, Uzzan B, Bouillet T, et al. Impact of physical activity on cancer-specific and overall survival of patients with colorectal cancer. Gastroenterol Res Pract. 2013;2013:340851.PubMedPubMedCentral Des Guetz G, Uzzan B, Bouillet T, et al. Impact of physical activity on cancer-specific and overall survival of patients with colorectal cancer. Gastroenterol Res Pract. 2013;2013:340851.PubMedPubMedCentral
124.
Zurück zum Zitat Je Y, Jeon JY, Giovannucci EL, Meyerhardt JA. Association between physical activity and mortality in colorectal cancer: a meta-analysis of prospective cohort studies. Int J Cancer. 2013;133(8):1905–13.PubMed Je Y, Jeon JY, Giovannucci EL, Meyerhardt JA. Association between physical activity and mortality in colorectal cancer: a meta-analysis of prospective cohort studies. Int J Cancer. 2013;133(8):1905–13.PubMed
125.
Zurück zum Zitat Goode AD, Lawler SP, Brakenridge CL, Reeves MM, Eakin EG. Telephone, print, and web-based interventions for physical activity, diet, and weight control among cancer survivors: a systematic review. J Cancer Surviv. 2015;9(4):660–82.PubMed Goode AD, Lawler SP, Brakenridge CL, Reeves MM, Eakin EG. Telephone, print, and web-based interventions for physical activity, diet, and weight control among cancer survivors: a systematic review. J Cancer Surviv. 2015;9(4):660–82.PubMed
126.
Zurück zum Zitat Bluethmann SM, Vernon SW, Gabriel KP, Murphy CC, Bartholomew LK. Taking the next step: a systematic review and meta-analysis of physical activity and behavior change interventions in recent post-treatment breast cancer survivors. Breast Cancer Res Treat. 2015;149(2):331–42.PubMedPubMedCentral Bluethmann SM, Vernon SW, Gabriel KP, Murphy CC, Bartholomew LK. Taking the next step: a systematic review and meta-analysis of physical activity and behavior change interventions in recent post-treatment breast cancer survivors. Breast Cancer Res Treat. 2015;149(2):331–42.PubMedPubMedCentral
127.
Zurück zum Zitat Courneya KS, Vardy JL, O'Callaghan CJ, Friedenreich CM, Campbell KL, Prapavessis H, et al. Effects of a structured exercise program on physical activity and fitness in colon cancer survivors: one year feasibility results from the CHALLENGE trial. Cancer Epidemiol Biomark Prev. 2016;25(6):969–77. Courneya KS, Vardy JL, O'Callaghan CJ, Friedenreich CM, Campbell KL, Prapavessis H, et al. Effects of a structured exercise program on physical activity and fitness in colon cancer survivors: one year feasibility results from the CHALLENGE trial. Cancer Epidemiol Biomark Prev. 2016;25(6):969–77.
128.
Zurück zum Zitat Short CE, Rebar A, James EL, Duncan MJ, Courneya KS, Plotnikoff RC, et al. How do different delivery schedules of tailored web-based physical activity advice for breast cancer survivors influence intervention use and efficacy? J Cancer Surviv. 2017;11(1):80–91.PubMed Short CE, Rebar A, James EL, Duncan MJ, Courneya KS, Plotnikoff RC, et al. How do different delivery schedules of tailored web-based physical activity advice for breast cancer survivors influence intervention use and efficacy? J Cancer Surviv. 2017;11(1):80–91.PubMed
129.
Zurück zum Zitat Kanera IM, Willems RA, Bolman CA, Mesters I, Verboon P, Lechner L. Long-term effects of a web-based cancer aftercare intervention on moderate physical activity and vegetable consumption among early cancer survivors: a randomized controlled trial. Int J Behav Nutr Phys Act. 2017;14(1):19.PubMedPubMedCentral Kanera IM, Willems RA, Bolman CA, Mesters I, Verboon P, Lechner L. Long-term effects of a web-based cancer aftercare intervention on moderate physical activity and vegetable consumption among early cancer survivors: a randomized controlled trial. Int J Behav Nutr Phys Act. 2017;14(1):19.PubMedPubMedCentral
130.
Zurück zum Zitat Kuijpers W, Groen WG. Development of MijnAVL, an interactive portal to empower breast and lung cancer survivors: an iterative, multi-stakeholder approach. JMIR Res Protoc. 2015;4(1):e14.PubMedPubMedCentral Kuijpers W, Groen WG. Development of MijnAVL, an interactive portal to empower breast and lung cancer survivors: an iterative, multi-stakeholder approach. JMIR Res Protoc. 2015;4(1):e14.PubMedPubMedCentral
131.
Zurück zum Zitat Kuijpers W, Groen WG. eHealth for breast cancer survivors: use, feasibility and impact of an interactive portal. JMIR Cancer. 2016;2(1):e3.PubMedPubMedCentral Kuijpers W, Groen WG. eHealth for breast cancer survivors: use, feasibility and impact of an interactive portal. JMIR Cancer. 2016;2(1):e3.PubMedPubMedCentral
132.
Zurück zum Zitat Timmerman JG, Dekker-van Weering MGH, Stuiver MM, et al. Ambulant monitoring and web-accessible home-based exercise program during outpatient follow-up for resected lung cancer survivors: actual use and feasibility in clinical practice. J Cancer Surviv. 2017;11(6):720–31.PubMedPubMedCentral Timmerman JG, Dekker-van Weering MGH, Stuiver MM, et al. Ambulant monitoring and web-accessible home-based exercise program during outpatient follow-up for resected lung cancer survivors: actual use and feasibility in clinical practice. J Cancer Surviv. 2017;11(6):720–31.PubMedPubMedCentral
133.
Zurück zum Zitat Rutten IJ, van Dijk DP, Kruitwagen RF, Beets-Tan RG, Olde Damink SW, van Gorp T. Loss of skeletal muscle during neoadjuvant chemotherapy is related to decreased survival in ovarian cancer patients. J Cachexia Sarcopenia Muscle. 2016;7(4):458–66.PubMedPubMedCentral Rutten IJ, van Dijk DP, Kruitwagen RF, Beets-Tan RG, Olde Damink SW, van Gorp T. Loss of skeletal muscle during neoadjuvant chemotherapy is related to decreased survival in ovarian cancer patients. J Cachexia Sarcopenia Muscle. 2016;7(4):458–66.PubMedPubMedCentral
134.
Zurück zum Zitat Prado CM, Lieffers JR, McCargar LJ, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9(7):629–35. Prado CM, Lieffers JR, McCargar LJ, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9(7):629–35.
135.
Zurück zum Zitat Costa LJ, Varella PC, del Giglio A. Weight changes during chemotherapy for breast cancer. Sao Paulo Med J. 2002;120(4):113–7.PubMed Costa LJ, Varella PC, del Giglio A. Weight changes during chemotherapy for breast cancer. Sao Paulo Med J. 2002;120(4):113–7.PubMed
136.
Zurück zum Zitat Ferioli M, Zauli G, Martelli AM, et al. Impact of physical exercise in cancer survivors during and after antineoplastic treatments. Oncotarget. 2018;9(17):14005–34.PubMedPubMedCentral Ferioli M, Zauli G, Martelli AM, et al. Impact of physical exercise in cancer survivors during and after antineoplastic treatments. Oncotarget. 2018;9(17):14005–34.PubMedPubMedCentral
137.
Zurück zum Zitat Grande AJ, Silva V, Maddocks M. Exercise for cancer cachexia in adults: executive summary of a Cochrane collaboration systematic review. J Cachexia Sarcopenia Muscle. 2015;6(3):208–11.PubMedPubMedCentral Grande AJ, Silva V, Maddocks M. Exercise for cancer cachexia in adults: executive summary of a Cochrane collaboration systematic review. J Cachexia Sarcopenia Muscle. 2015;6(3):208–11.PubMedPubMedCentral
138.
Zurück zum Zitat Crawford JJ, Holt NL, Vallance JK, Courneya KS. A new paradigm for examining the correlates of aerobic, strength, and combined exercise: an application to gynecologic cancer survivors. Support Care Cancer. 2016;24(8):3533–41.PubMed Crawford JJ, Holt NL, Vallance JK, Courneya KS. A new paradigm for examining the correlates of aerobic, strength, and combined exercise: an application to gynecologic cancer survivors. Support Care Cancer. 2016;24(8):3533–41.PubMed
139.
Zurück zum Zitat Courneya KS, Segal RJ, Reid RD, Jones LW, Malone SC, Venner PM, et al. Three independent factors predicted adherence in a randomized controlled trial of resistance exercise training among prostate cancer survivors. J Clin Epidemiol. 2004;57(6):571–9.PubMed Courneya KS, Segal RJ, Reid RD, Jones LW, Malone SC, Venner PM, et al. Three independent factors predicted adherence in a randomized controlled trial of resistance exercise training among prostate cancer survivors. J Clin Epidemiol. 2004;57(6):571–9.PubMed
140.
Zurück zum Zitat Boslooper K, Kibbelaar R, Storm H, Veeger NJGM, Hovenga S, Woolthuis G, et al. Treatment with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone is beneficial but toxic in very elderly patients with diffuse large B-cell lymphoma: a population-based cohort study on treatment, toxicity and outcome. Leuk Lymphoma. 2014;55(3):526–32.PubMed Boslooper K, Kibbelaar R, Storm H, Veeger NJGM, Hovenga S, Woolthuis G, et al. Treatment with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone is beneficial but toxic in very elderly patients with diffuse large B-cell lymphoma: a population-based cohort study on treatment, toxicity and outcome. Leuk Lymphoma. 2014;55(3):526–32.PubMed
141.
Zurück zum Zitat van de Schans SA, Wymenga AN, van Spronsen DJ, Schouten HC, Coebergh JW, Janssen-Heijnen ML. Two sides of the medallion: poor treatment tolerance but better survival by standard chemotherapy in elderly patients with advanced-stage diffuse large B-cell lymphoma. Ann Oncol. 2012;23(5):1280–6.PubMed van de Schans SA, Wymenga AN, van Spronsen DJ, Schouten HC, Coebergh JW, Janssen-Heijnen ML. Two sides of the medallion: poor treatment tolerance but better survival by standard chemotherapy in elderly patients with advanced-stage diffuse large B-cell lymphoma. Ann Oncol. 2012;23(5):1280–6.PubMed
142.
Zurück zum Zitat Lin TL, Kuo MC, Shih LY, Dunn P, Wang PN, Wu JH, et al. The impact of age, Charlson comorbidity index, and performance status on treatment of elderly patients with diffuse large B cell lymphoma. Ann Hematol. 2012;91(9):1383–91.PubMed Lin TL, Kuo MC, Shih LY, Dunn P, Wang PN, Wu JH, et al. The impact of age, Charlson comorbidity index, and performance status on treatment of elderly patients with diffuse large B cell lymphoma. Ann Hematol. 2012;91(9):1383–91.PubMed
143.
144.
Zurück zum Zitat Juvet LK, Thune I, Elvsaas IKO, Fors EA, Lundgren S, Bertheussen G, et al. The effect of exercise on fatigue and physical functioning in breast cancer patients during and after treatment and at 6 months follow-up: a meta-analysis. Breast. 2017;33:166–77.PubMed Juvet LK, Thune I, Elvsaas IKO, Fors EA, Lundgren S, Bertheussen G, et al. The effect of exercise on fatigue and physical functioning in breast cancer patients during and after treatment and at 6 months follow-up: a meta-analysis. Breast. 2017;33:166–77.PubMed
145.
Zurück zum Zitat Olsson Möller U, Olsson I-M, Sjövall K, Beck I, Rydén L, Malmström M. Barriers and facilitators for individualized rehabilitation during breast cancer treatment—a focus group study exploring health care professionals’ experiences. BMC Health Serv Res. 2020;20(1):252.PubMedPubMedCentral Olsson Möller U, Olsson I-M, Sjövall K, Beck I, Rydén L, Malmström M. Barriers and facilitators for individualized rehabilitation during breast cancer treatment—a focus group study exploring health care professionals’ experiences. BMC Health Serv Res. 2020;20(1):252.PubMedPubMedCentral
146.
Zurück zum Zitat Smith-Turchyn J, Richardson J, Tozer R, McNeely M, Thabane L. Physical activity and breast cancer: a qualitative study on the barriers to and facilitators of exercise promotion from the perspective of health care professionals. (0300-0508 (Print)). Smith-Turchyn J, Richardson J, Tozer R, McNeely M, Thabane L. Physical activity and breast cancer: a qualitative study on the barriers to and facilitators of exercise promotion from the perspective of health care professionals. (0300-0508 (Print)).
Metadaten
Titel
Determinants of adherence to physical cancer rehabilitation guidelines among cancer patients and cancer centers: a cross-sectional observational study
verfasst von
Charlotte IJsbrandy
Petronella B. Ottevanger
Winald R. Gerritsen
Wim H. van Harten
Rosella P. M. G. Hermens
Publikationsdatum
28.09.2020
Verlag
Springer US
Erschienen in
Journal of Cancer Survivorship / Ausgabe 1/2021
Print ISSN: 1932-2259
Elektronische ISSN: 1932-2267
DOI
https://doi.org/10.1007/s11764-020-00921-8

Weitere Artikel der Ausgabe 1/2021

Journal of Cancer Survivorship 1/2021 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.