Skip to main content

25.07.2023

Developing Targeted Therapies for T Cell Acute Lymphoblastic Leukemia/Lymphoma

verfasst von: Adam S. DuVall, Austin Wesevich, Richard A. Larson

Erschienen in: Current Hematologic Malignancy Reports

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

Largely, treatment advances in relapsed and/or refractory acute lymphoblastic leukemia (ALL) have been made in B cell disease leaving T cell ALL reliant upon high-intensity chemotherapy. Recent advances in the understanding of the biology of T-ALL and the improvement in immunotherapies have led to new therapeutic pathways to target and exploit. Here, we review the more promising pathways that are able to be targeted and other therapeutic possibilities for T-ALL.

Recent Findings

Preclinical models and early-phase clinical trials have shown promising results in some case in the treatment of T-ALL. Targeting many different pathways could lead to the next advancement in the treatment of relapsed and/or refractory disease. Recent advances in cellular therapies have also shown promise in this space.

Summary

When reviewing the literature as a whole, targeting important pathways and antigens likely will lead to the next advancement in T-ALL survival since intensifying chemotherapy.
Literatur
1.••
Zurück zum Zitat Stock W, et al. A pediatric regimen for older adolescents and young adults with acute lymphoblastic leukemia: results of CALGB 10403. Blood. 2019;133(14):1548–59. Practice changing publication on AYA ALL from an adult cooperative group. PubMedPubMedCentralCrossRef Stock W, et al. A pediatric regimen for older adolescents and young adults with acute lymphoblastic leukemia: results of CALGB 10403. Blood. 2019;133(14):1548–59. Practice changing publication on AYA ALL from an adult cooperative group. PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Schrappe M, et al. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. Blood. 2011;118(8):2077–84. PubMedCrossRef Schrappe M, et al. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. Blood. 2011;118(8):2077–84. PubMedCrossRef
3.••
Zurück zum Zitat Dunsmore KP, et al. Children's Oncology Group AALL0434: a phase III randomized clinical trial testing nelarabine in newly diagnosed T-cell acute lymphoblastic leukemia. J Clin Oncol. 2020;38(28):3282–93. Practice changing trial for young people with T ALL from the pediatric collaborative group. PubMedPubMedCentralCrossRef Dunsmore KP, et al. Children's Oncology Group AALL0434: a phase III randomized clinical trial testing nelarabine in newly diagnosed T-cell acute lymphoblastic leukemia. J Clin Oncol. 2020;38(28):3282–93. Practice changing trial for young people with T ALL from the pediatric collaborative group. PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Jing D, et al. Opposing regulation of BIM and BCL2 controls glucocorticoid-induced apoptosis of pediatric acute lymphoblastic leukemia cells. Blood. 2015;125(2):273–83. PubMedCrossRef Jing D, et al. Opposing regulation of BIM and BCL2 controls glucocorticoid-induced apoptosis of pediatric acute lymphoblastic leukemia cells. Blood. 2015;125(2):273–83. PubMedCrossRef
5.
Zurück zum Zitat Li Y, et al. IL-7 receptor mutations and steroid resistance in pediatric T cell acute lymphoblastic leukemia: a genome sequencing study. PLOS Med. 2016;13(12):e1002200. PubMedPubMedCentralCrossRef Li Y, et al. IL-7 receptor mutations and steroid resistance in pediatric T cell acute lymphoblastic leukemia: a genome sequencing study. PLOS Med. 2016;13(12):e1002200. PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Barata JT, et al. Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells. J Exp Med. 2004;200(5):659–69. PubMedPubMedCentralCrossRef Barata JT, et al. Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells. J Exp Med. 2004;200(5):659–69. PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat van der Zwet JCG, et al. MAPK-ERK is a central pathway in T-cell acute lymphoblastic leukemia that drives steroid resistance. Leukemia. 2021;35(12):3394–405. PubMedCrossRef van der Zwet JCG, et al. MAPK-ERK is a central pathway in T-cell acute lymphoblastic leukemia that drives steroid resistance. Leukemia. 2021;35(12):3394–405. PubMedCrossRef
8.
Zurück zum Zitat Dillon M, et al. Progress on Ras/MAPK signaling research and targeting in blood and solid cancers. Cancers (Basel). 2021;13(20). Dillon M, et al. Progress on Ras/MAPK signaling research and targeting in blood and solid cancers. Cancers (Basel). 2021;13(20).
9.
Zurück zum Zitat Ribeiro D, et al. STAT5 is essential for IL-7-mediated viability, growth, and proliferation of T-cell acute lymphoblastic leukemia cells. Blood Adv. 2018;2(17):2199–213. PubMedPubMedCentralCrossRef Ribeiro D, et al. STAT5 is essential for IL-7-mediated viability, growth, and proliferation of T-cell acute lymphoblastic leukemia cells. Blood Adv. 2018;2(17):2199–213. PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat de Bock CE, et al. HOXA9 cooperates with activated JAK/STAT signaling to drive leukemia development. Cancer Discov. 2018;8(5):616–31. PubMedCrossRef de Bock CE, et al. HOXA9 cooperates with activated JAK/STAT signaling to drive leukemia development. Cancer Discov. 2018;8(5):616–31. PubMedCrossRef
11.
Zurück zum Zitat Blanco-Aparicio C, Carnero A. Pim kinases in cancer: diagnostic, prognostic and treatment opportunities. Biochem Pharmacol. 2013;85(5):629–43. PubMedCrossRef Blanco-Aparicio C, Carnero A. Pim kinases in cancer: diagnostic, prognostic and treatment opportunities. Biochem Pharmacol. 2013;85(5):629–43. PubMedCrossRef
12.
Zurück zum Zitat Bachmann M, et al. The oncogenic serine/threonine kinase Pim-1 directly phosphorylates and activates the G2/M specific phosphatase Cdc25C. Int J Biochem Cell Biol. 2006;38(3):430–43. PubMedCrossRef Bachmann M, et al. The oncogenic serine/threonine kinase Pim-1 directly phosphorylates and activates the G2/M specific phosphatase Cdc25C. Int J Biochem Cell Biol. 2006;38(3):430–43. PubMedCrossRef
13.
14.
Zurück zum Zitat De Smedt R, et al. Targeting cytokine- and therapy-induced PIM1 activation in preclinical models of T-cell acute lymphoblastic leukemia and lymphoma. Blood. 2020;135(19):1685–95. PubMedCrossRef De Smedt R, et al. Targeting cytokine- and therapy-induced PIM1 activation in preclinical models of T-cell acute lymphoblastic leukemia and lymphoma. Blood. 2020;135(19):1685–95. PubMedCrossRef
15.
Zurück zum Zitat Luszczak S, et al. PIM kinase inhibition: co-targeted therapeutic approaches in prostate cancer. Signal Transduct Targeted Ther. 2020;5(1):7. CrossRef Luszczak S, et al. PIM kinase inhibition: co-targeted therapeutic approaches in prostate cancer. Signal Transduct Targeted Ther. 2020;5(1):7. CrossRef
16.
Zurück zum Zitat Mansour MR, et al. High incidence of Notch-1 mutations in adult patients with T-cell acute lymphoblastic leukemia. Leukemia. 2006;20(3):537–9. PubMedCrossRef Mansour MR, et al. High incidence of Notch-1 mutations in adult patients with T-cell acute lymphoblastic leukemia. Leukemia. 2006;20(3):537–9. PubMedCrossRef
17.
Zurück zum Zitat Weng AP, et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 2006;20(15):2096–109. PubMedPubMedCentralCrossRef Weng AP, et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 2006;20(15):2096–109. PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Real PJ, et al. Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med. 2009;15(1):50–8. PubMedCrossRef Real PJ, et al. Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med. 2009;15(1):50–8. PubMedCrossRef
20.
Zurück zum Zitat Zheng H, et al. KLF4 gene expression is inhibited by the notch signaling pathway that controls goblet cell differentiation in mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol. 2009;296(3):G490–8. PubMedCrossRef Zheng H, et al. KLF4 gene expression is inhibited by the notch signaling pathway that controls goblet cell differentiation in mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol. 2009;296(3):G490–8. PubMedCrossRef
21.
Zurück zum Zitat Zweidler-McKay PA, et al. The safety and activity of BMS-906024, a gamma secretase inhibitor (GSI) with anti-Notch activity, in patients with relapsed T-cell acute lymphoblastic leukemia (T-ALL): initial results of a phase 1 trial. Blood. 2014;124(21):968–8. CrossRef Zweidler-McKay PA, et al. The safety and activity of BMS-906024, a gamma secretase inhibitor (GSI) with anti-Notch activity, in patients with relapsed T-cell acute lymphoblastic leukemia (T-ALL): initial results of a phase 1 trial. Blood. 2014;124(21):968–8. CrossRef
22.
Zurück zum Zitat Knoechel B, et al. Complete hematologic response of early T-cell progenitor acute lymphoblastic leukemia to the γ-secretase inhibitor BMS-906024: genetic and epigenetic findings in an outlier case. Cold Spring Harb Mol Case Stud. 2015;1(1):a000539. PubMedPubMedCentralCrossRef Knoechel B, et al. Complete hematologic response of early T-cell progenitor acute lymphoblastic leukemia to the γ-secretase inhibitor BMS-906024: genetic and epigenetic findings in an outlier case. Cold Spring Harb Mol Case Stud. 2015;1(1):a000539. PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Borthakur G, et al. Phase 1 study to evaluate Crenigacestat (LY3039478) in combination with dexamethasone in patients with T-cell acute lymphoblastic leukemia and lymphoma. Cancer. 2021;127(3):372–80. PubMedCrossRef Borthakur G, et al. Phase 1 study to evaluate Crenigacestat (LY3039478) in combination with dexamethasone in patients with T-cell acute lymphoblastic leukemia and lymphoma. Cancer. 2021;127(3):372–80. PubMedCrossRef
24.
Zurück zum Zitat O'Neil J, et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med. 2007;204(8):1813–24. PubMedPubMedCentralCrossRef O'Neil J, et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med. 2007;204(8):1813–24. PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Knoechel B, et al. An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat Genet. 2014;46(4):364–70. PubMedPubMedCentralCrossRef Knoechel B, et al. An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat Genet. 2014;46(4):364–70. PubMedPubMedCentralCrossRef
26.•
Zurück zum Zitat Liu Y, et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 2017;49(8):1211–8. Article that includes a detailed description of genetic changes seen in T ALL. PubMedPubMedCentralCrossRef Liu Y, et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 2017;49(8):1211–8. Article that includes a detailed description of genetic changes seen in T ALL. PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Sicinska E, et al. Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell. 2003;4(6):451–61. PubMedCrossRef Sicinska E, et al. Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell. 2003;4(6):451–61. PubMedCrossRef
29.
Zurück zum Zitat Pikman Y, et al. Synergistic drug combinations with a CDK4/6 inhibitor in T-cell acute lymphoblastic leukemia. Clin Cancer Res. 2017;23(4):1012–24. PubMedCrossRef Pikman Y, et al. Synergistic drug combinations with a CDK4/6 inhibitor in T-cell acute lymphoblastic leukemia. Clin Cancer Res. 2017;23(4):1012–24. PubMedCrossRef
31.
Zurück zum Zitat Mansour MR, et al. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science. 2014;346(6215):1373–7. PubMedPubMedCentralCrossRef Mansour MR, et al. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science. 2014;346(6215):1373–7. PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Cidado J, et al. AZD4573 is a highly selective CDK9 inhibitor that suppresses MCL-1 and induces apoptosis in hematologic cancer cells. Clin Cancer Res. 2020;26(4):922–34. PubMedCrossRef Cidado J, et al. AZD4573 is a highly selective CDK9 inhibitor that suppresses MCL-1 and induces apoptosis in hematologic cancer cells. Clin Cancer Res. 2020;26(4):922–34. PubMedCrossRef
33.
Zurück zum Zitat Olson CM, et al. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat Chem Biol. 2018;14(2):163–70. PubMedCrossRef Olson CM, et al. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat Chem Biol. 2018;14(2):163–70. PubMedCrossRef
34.
Zurück zum Zitat Chen L, et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell. 2005;17(3):393–403. PubMedCrossRef Chen L, et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell. 2005;17(3):393–403. PubMedCrossRef
35.
Zurück zum Zitat Chonghaile TN, et al. Maturation stage of T-cell acute lymphoblastic leukemia determines BCL-2 versus BCL-XL dependence and sensitivity to ABT-199. Cancer Discov. 2014;4(9):1074–87. PubMedPubMedCentralCrossRef Chonghaile TN, et al. Maturation stage of T-cell acute lymphoblastic leukemia determines BCL-2 versus BCL-XL dependence and sensitivity to ABT-199. Cancer Discov. 2014;4(9):1074–87. PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Richard-Carpentier G, et al. Clinical experience with venetoclax combined with chemotherapy for relapsed or refractory T-cell acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk. 2020;20(4):212–8. PubMedCrossRef Richard-Carpentier G, et al. Clinical experience with venetoclax combined with chemotherapy for relapsed or refractory T-cell acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk. 2020;20(4):212–8. PubMedCrossRef
37.••
Zurück zum Zitat Jain N, et al. A multicenter phase I study combining venetoclax with mini-hyper-CVD in older adults with untreated and relapsed/refractory acute lymphoblastic leukemia. Blood. 2019;134(Supplement_1):3867–7. An excellent preliminary study in older adults with combination chemotherapy that will likely drive future randomized trials. CrossRef Jain N, et al. A multicenter phase I study combining venetoclax with mini-hyper-CVD in older adults with untreated and relapsed/refractory acute lymphoblastic leukemia. Blood. 2019;134(Supplement_1):3867–7. An excellent preliminary study in older adults with combination chemotherapy that will likely drive future randomized trials. CrossRef
38.•
Zurück zum Zitat Pullarkat VA, et al. Venetoclax and navitoclax in combination with chemotherapy in patients with relapsed or refractory acute lymphoblastic leukemia and lymphoblastic lymphoma. Cancer Discov. 2021;11(6):1440–1453. Early phase study demonstrating effectiveness of BCL-2/BCL-XL combination in relapsed ALL. Pullarkat VA, et al. Venetoclax and navitoclax in combination with chemotherapy in patients with relapsed or refractory acute lymphoblastic leukemia and lymphoblastic lymphoma. Cancer Discov. 2021;11(6):1440–1453. Early phase study demonstrating effectiveness of BCL-2/BCL-XL combination in relapsed ALL.
39.
Zurück zum Zitat Vilas-Zornoza A, et al. Preclinical activity of LBH589 alone or in combination with chemotherapy in a xenogeneic mouse model of human acute lymphoblastic leukemia. Leukemia. 2012;26(7):1517–26. PubMedCrossRef Vilas-Zornoza A, et al. Preclinical activity of LBH589 alone or in combination with chemotherapy in a xenogeneic mouse model of human acute lymphoblastic leukemia. Leukemia. 2012;26(7):1517–26. PubMedCrossRef
40.
Zurück zum Zitat Carraway HE, et al. Phase 1 study of the histone deacetylase inhibitor entinostat plus clofarabine for poor-risk Philadelphia chromosome-negative (newly diagnosed older adults or adults with relapsed refractory disease) acute lymphoblastic leukemia or biphenotypic leukemia. Leuk Res. 2021;110:106707. PubMedPubMedCentralCrossRef Carraway HE, et al. Phase 1 study of the histone deacetylase inhibitor entinostat plus clofarabine for poor-risk Philadelphia chromosome-negative (newly diagnosed older adults or adults with relapsed refractory disease) acute lymphoblastic leukemia or biphenotypic leukemia. Leuk Res. 2021;110:106707. PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Touzart A, et al. Epigenetic analysis of patients with T-ALL identifies poor outcomes and a hypomethylating agent-responsive subgroup. Sci Transl Med. 2021;13(595). Touzart A, et al. Epigenetic analysis of patients with T-ALL identifies poor outcomes and a hypomethylating agent-responsive subgroup. Sci Transl Med. 2021;13(595).
42.
Zurück zum Zitat Baig MU, et al. Venetoclax and decitabine in pediatric refractory T-cell lymphoblastic lymphoma. J Pediatr Hematol Oncol. 2021;43(7):e991–6. PubMed Baig MU, et al. Venetoclax and decitabine in pediatric refractory T-cell lymphoblastic lymphoma. J Pediatr Hematol Oncol. 2021;43(7):e991–6. PubMed
43.
Zurück zum Zitat Farhadfar N, et al. Venetoclax and decitabine for treatment of relapsed T-cell acute lymphoblastic leukemia: a case report and review of literature. Hematol Oncol Stem Cell Ther. 2021;14(3):246–51. PubMedCrossRef Farhadfar N, et al. Venetoclax and decitabine for treatment of relapsed T-cell acute lymphoblastic leukemia: a case report and review of literature. Hematol Oncol Stem Cell Ther. 2021;14(3):246–51. PubMedCrossRef
44.
Zurück zum Zitat Rahmat LT, et al. Venetoclax in combination with decitabine for relapsed T-cell acute lymphoblastic leukemia after allogeneic hematopoietic cell transplant. Case Rep Hematol. 2018;2018:6092646. PubMedPubMedCentral Rahmat LT, et al. Venetoclax in combination with decitabine for relapsed T-cell acute lymphoblastic leukemia after allogeneic hematopoietic cell transplant. Case Rep Hematol. 2018;2018:6092646. PubMedPubMedCentral
45.
Zurück zum Zitat Ito S. Proteasome inhibitors for the treatment of multiple myeloma. Cancers (Basel). 2020;12(2). Ito S. Proteasome inhibitors for the treatment of multiple myeloma. Cancers (Basel). 2020;12(2).
46.
Zurück zum Zitat Lato MW, et al. The new therapeutic strategies in pediatric T-cell acute lymphoblastic leukemia. Int J Mol Sci. 2021;22(9). Lato MW, et al. The new therapeutic strategies in pediatric T-cell acute lymphoblastic leukemia. Int J Mol Sci. 2021;22(9).
47.
Zurück zum Zitat Horton TM, et al. Bortezomib reinduction chemotherapy in high-risk ALL in first relapse: a report from the Children's Oncology Group. Br J Haematol. 2019;186(2):274–85. PubMedPubMedCentral Horton TM, et al. Bortezomib reinduction chemotherapy in high-risk ALL in first relapse: a report from the Children's Oncology Group. Br J Haematol. 2019;186(2):274–85. PubMedPubMedCentral
48.••
Zurück zum Zitat Teachey DT, et al. Children's Oncology Group Trial AALL1231: a phase III clinical trial testing bortezomib in newly diagnosed T-cell acute lymphoblastic leukemia and lymphoma. J Clin Oncol. 2022:Jco2102678. Initial evidence of potential utility of proteasome inhibition in T ALL. Teachey DT, et al. Children's Oncology Group Trial AALL1231: a phase III clinical trial testing bortezomib in newly diagnosed T-cell acute lymphoblastic leukemia and lymphoma. J Clin Oncol. 2022:Jco2102678. Initial evidence of potential utility of proteasome inhibition in T ALL.
49.
Zurück zum Zitat August KJ, et al. Treatment of children with relapsed and refractory acute lymphoblastic leukemia with mitoxantrone, vincristine, pegaspargase, dexamethasone, and bortezomib. Pediatr Blood Cancer. 2020;67(3):e28062. PubMedCrossRef August KJ, et al. Treatment of children with relapsed and refractory acute lymphoblastic leukemia with mitoxantrone, vincristine, pegaspargase, dexamethasone, and bortezomib. Pediatr Blood Cancer. 2020;67(3):e28062. PubMedCrossRef
50.
Zurück zum Zitat Amrein P, et al. Ixazomib in addition to chemotherapy for the treatment of acute lymphoblastic leukemia in older adults. Leuk Lymphoma. 2022;63:1–8. CrossRef Amrein P, et al. Ixazomib in addition to chemotherapy for the treatment of acute lymphoblastic leukemia in older adults. Leuk Lymphoma. 2022;63:1–8. CrossRef
51.
Zurück zum Zitat Vicente C, et al. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia. Haematologica. 2015;100(10):1301–10. PubMedPubMedCentralCrossRef Vicente C, et al. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia. Haematologica. 2015;100(10):1301–10. PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Girardi T, et al. The genetics and molecular biology of T-ALL. Blood. 2017;129(9):1113–23. PubMedCrossRef Girardi T, et al. The genetics and molecular biology of T-ALL. Blood. 2017;129(9):1113–23. PubMedCrossRef
54.
Zurück zum Zitat Maude SL, et al. Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia. Blood. 2015;125(11):1759–67. PubMedPubMedCentralCrossRef Maude SL, et al. Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia. Blood. 2015;125(11):1759–67. PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Delgado-Martin C, et al. JAK/STAT pathway inhibition overcomes IL7-induced glucocorticoid resistance in a subset of human T-cell acute lymphoblastic leukemias. Leukemia. 2017;31(12):2568–76. PubMedPubMedCentralCrossRef Delgado-Martin C, et al. JAK/STAT pathway inhibition overcomes IL7-induced glucocorticoid resistance in a subset of human T-cell acute lymphoblastic leukemias. Leukemia. 2017;31(12):2568–76. PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Barber KE, et al. Amplification of the ABL gene in T-cell acute lymphoblastic leukemia. Leukemia. 2004;18(6):1153–6. PubMedCrossRef Barber KE, et al. Amplification of the ABL gene in T-cell acute lymphoblastic leukemia. Leukemia. 2004;18(6):1153–6. PubMedCrossRef
57.
Zurück zum Zitat Graux C, et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet. 2004;36(10):1084–9. PubMedCrossRef Graux C, et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet. 2004;36(10):1084–9. PubMedCrossRef
58.
Zurück zum Zitat Quintás-Cardama A, et al. Activity of tyrosine kinase inhibitors against human NUP214-ABL1-positive T cell malignancies. Leukemia. 2008;22(6):1117–24. PubMedCrossRef Quintás-Cardama A, et al. Activity of tyrosine kinase inhibitors against human NUP214-ABL1-positive T cell malignancies. Leukemia. 2008;22(6):1117–24. PubMedCrossRef
59.
Zurück zum Zitat Vanden Bempt M, et al. Cooperative enhancer activation by TLX1 and STAT5 drives development of NUP214-ABL1/TLX1-positive T cell acute lymphoblastic leukemia. Cancer Cell. 2018;34(2):271–285.e7. CrossRef Vanden Bempt M, et al. Cooperative enhancer activation by TLX1 and STAT5 drives development of NUP214-ABL1/TLX1-positive T cell acute lymphoblastic leukemia. Cancer Cell. 2018;34(2):271–285.e7. CrossRef
60.
Zurück zum Zitat Laukkanen S, et al. In silico and preclinical drug screening identifies dasatinib as a targeted therapy for T-ALL. Blood Cancer J. 2017;7(9):e604. PubMedPubMedCentralCrossRef Laukkanen S, et al. In silico and preclinical drug screening identifies dasatinib as a targeted therapy for T-ALL. Blood Cancer J. 2017;7(9):e604. PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Frismantas V, et al. Ex vivo drug response profiling detects recurrent sensitivity patterns in drug-resistant acute lymphoblastic leukemia. Blood. 2017;129(11):e26–37. PubMedPubMedCentralCrossRef Frismantas V, et al. Ex vivo drug response profiling detects recurrent sensitivity patterns in drug-resistant acute lymphoblastic leukemia. Blood. 2017;129(11):e26–37. PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Deenik W, et al. Rapid complete cytogenetic remission after upfront dasatinib monotherapy in a patient with a NUP214-ABL1-positive T-cell acute lymphoblastic leukemia. Leukemia. 2009;23(3):627–9. PubMedCrossRef Deenik W, et al. Rapid complete cytogenetic remission after upfront dasatinib monotherapy in a patient with a NUP214-ABL1-positive T-cell acute lymphoblastic leukemia. Leukemia. 2009;23(3):627–9. PubMedCrossRef
63.
Zurück zum Zitat Cordo’ V, et al. Phosphoproteomic profiling of T cell acute lymphoblastic leukemia reveals targetable kinases and combination treatment strategies. Nat Comm. 2022;13(1):1048. CrossRef Cordo’ V, et al. Phosphoproteomic profiling of T cell acute lymphoblastic leukemia reveals targetable kinases and combination treatment strategies. Nat Comm. 2022;13(1):1048. CrossRef
64.
Zurück zum Zitat Pocock R, et al. Current and emerging therapeutic approaches for T-cell acute lymphoblastic leukaemia. Br J Haematol. 2021;194(1):28–43. PubMedCrossRef Pocock R, et al. Current and emerging therapeutic approaches for T-cell acute lymphoblastic leukaemia. Br J Haematol. 2021;194(1):28–43. PubMedCrossRef
65.
Zurück zum Zitat Palamarchuk A, et al. Akt phosphorylates Tal1 oncoprotein and inhibits its repressor activity. Cancer Res. 2005;65(11):4515–9. PubMedCrossRef Palamarchuk A, et al. Akt phosphorylates Tal1 oncoprotein and inhibits its repressor activity. Cancer Res. 2005;65(11):4515–9. PubMedCrossRef
66.
67.
Zurück zum Zitat Piovan E, et al. Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia. Cancer Cell. 2013;24(6):766–76. PubMedCrossRef Piovan E, et al. Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia. Cancer Cell. 2013;24(6):766–76. PubMedCrossRef
68.
Zurück zum Zitat Kong D, et al. Growth inhibition and suppression of the mTOR and Wnt/β-catenin pathways in T-acute lymphoblastic leukemia by rapamycin and MYCN depletion. Hematol Oncol. 2021;39(2):222–30. PubMedCrossRef Kong D, et al. Growth inhibition and suppression of the mTOR and Wnt/β-catenin pathways in T-acute lymphoblastic leukemia by rapamycin and MYCN depletion. Hematol Oncol. 2021;39(2):222–30. PubMedCrossRef
69.
Zurück zum Zitat Daver N, et al. A phase I/II study of the mTOR inhibitor everolimus in combination with HyperCVAD chemotherapy in patients with relapsed/refractory acute lymphoblastic leukemia. Clin Cancer Res. 2015;21(12):2704–14. PubMedPubMedCentralCrossRef Daver N, et al. A phase I/II study of the mTOR inhibitor everolimus in combination with HyperCVAD chemotherapy in patients with relapsed/refractory acute lymphoblastic leukemia. Clin Cancer Res. 2015;21(12):2704–14. PubMedPubMedCentralCrossRef
70.•
Zurück zum Zitat Bride KL, et al. Preclinical efficacy of daratumumab in T-cell acute lymphoblastic leukemia. Blood. 2018;131(9):995–9. Potential preclinical evidence to incorporate daratumumab in future T ALL clinical trials. PubMedPubMedCentralCrossRef Bride KL, et al. Preclinical efficacy of daratumumab in T-cell acute lymphoblastic leukemia. Blood. 2018;131(9):995–9. Potential preclinical evidence to incorporate daratumumab in future T ALL clinical trials. PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Naik J, et al. CD38 as a therapeutic target for adult acute myeloid leukemia and T-cell acute lymphoblastic leukemia. Haematologica. 2019;104(3):e100–3. PubMedPubMedCentralCrossRef Naik J, et al. CD38 as a therapeutic target for adult acute myeloid leukemia and T-cell acute lymphoblastic leukemia. Haematologica. 2019;104(3):e100–3. PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Boissel N, et al. Isatuximab monotherapy in patients with refractory T-acute lymphoblastic leukemia or T-lymphoblastic lymphoma: phase 2 study. Cancer Med. 2022;11(5):1292–8. PubMedPubMedCentralCrossRef Boissel N, et al. Isatuximab monotherapy in patients with refractory T-acute lymphoblastic leukemia or T-lymphoblastic lymphoma: phase 2 study. Cancer Med. 2022;11(5):1292–8. PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Zuch de Zafra CL, et al. Targeting multiple myeloma with AMG 424, a novel anti-CD38/CD3 bispecific T-cell-recruiting antibody optimized for cytotoxicity and cytokine release. Clin Cancer Res. 2019;25(13):3921–33. PubMedCrossRef Zuch de Zafra CL, et al. Targeting multiple myeloma with AMG 424, a novel anti-CD38/CD3 bispecific T-cell-recruiting antibody optimized for cytotoxicity and cytokine release. Clin Cancer Res. 2019;25(13):3921–33. PubMedCrossRef
74.
Zurück zum Zitat Teachey DT, Hunger SP. Anti-CD7 CAR T cells for T-ALL: impressive early-stage efficacy. Nat Rev Clin Oncol. 2021;18(11):677–8. PubMedCrossRef Teachey DT, Hunger SP. Anti-CD7 CAR T cells for T-ALL: impressive early-stage efficacy. Nat Rev Clin Oncol. 2021;18(11):677–8. PubMedCrossRef
75.
Zurück zum Zitat Pan J, et al. Donor-derived CD7 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia: first-in-human, phase I trial. J Clin Oncol. 2021;39(30):3340–51. PubMedCrossRef Pan J, et al. Donor-derived CD7 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia: first-in-human, phase I trial. J Clin Oncol. 2021;39(30):3340–51. PubMedCrossRef
77.
78.
Zurück zum Zitat Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F. CAR-T cell therapy in T-cell malignancies: is success a low-hanging fruit? Stem Cell Res Ther. 2021;12(1):527. PubMedPubMedCentralCrossRef Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F. CAR-T cell therapy in T-cell malignancies: is success a low-hanging fruit? Stem Cell Res Ther. 2021;12(1):527. PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Sánchez-Martínez D, et al. Fratricide-resistant CD1a-specific CAR T cells for the treatment of cortical T-cell acute lymphoblastic leukemia. Blood. 2019;133(21):2291–304. PubMedPubMedCentralCrossRef Sánchez-Martínez D, et al. Fratricide-resistant CD1a-specific CAR T cells for the treatment of cortical T-cell acute lymphoblastic leukemia. Blood. 2019;133(21):2291–304. PubMedPubMedCentralCrossRef
Metadaten
Titel
Developing Targeted Therapies for T Cell Acute Lymphoblastic Leukemia/Lymphoma
verfasst von
Adam S. DuVall
Austin Wesevich
Richard A. Larson
Publikationsdatum
25.07.2023
Verlag
Springer US
Erschienen in
Current Hematologic Malignancy Reports
Print ISSN: 1558-8211
Elektronische ISSN: 1558-822X
DOI
https://doi.org/10.1007/s11899-023-00706-7

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.