13.10.2022 | Original Article
Development of a novel small-animal myocardial phantom can evaluate the image quality of dual-isotope simultaneous acquisition (DISA)
Erschienen in: Annals of Nuclear Medicine | Ausgabe 12/2022
Einloggen, um Zugang zu erhaltenAbstract
Background
Myocardial phantom studies are widely used as a tool to accurately assess the physical phenomenon of dual-isotope simultaneous acquisition (DISA) in the small-animal fields. However, the previous phantom did not reproduce the structures of rats or mice. The aim of this study was to develop a novel myocardial phantom simulating the structure of a small animal that can be evaluated using the image quality of DISA.
Methods
A novel small-animal myocardial phantom that simulated a rat was constructed by the myocardium, liver, lung, spine, and torso. Normal and inferior wall defect myocardial phantoms were filled with 99mTc or 18F solution to simulate single-isotope acquisition (SIA) and DISA. Phantom and small-animal images with no scatter correction (nonSC) and scatter correction (SC) were created.
Results
The 99mTc DISA with SC showed a low %CV compared to that with nonSC. Although the 99mTc DISA with nonSC had lower cavity contrast than that of 99mTc SIA with nonSC, the cavity contrast of SC had similar values between SIA and DISA. The minimum %uptake of 99mTc SIA with nonSC was a lower value compared to that of 99mTc DISA with nonSC. The 99mTc DISA was equivalent to the minimum %uptake of 99mTc SIA by SC.
Conclusion
We have developed a novel myocardial phantom for the rat model to evaluate the image quality for reproducing the physical phenomenon associated with radiation attenuation and scattering. Furthermore, we could demonstrate the usefulness of the novel small-animal myocardial phantom by image quality evaluation of DISA with 99mTc and 18F compared to SIA.
Anzeige