Skip to main content
Erschienen in: Clinical Pharmacokinetics 6/2016

21.12.2015 | Original Research Article

Development of a Physiologically Based Pharmacokinetic Model for Itraconazole Pharmacokinetics and Drug–Drug Interaction Prediction

verfasst von: Yuan Chen, Fang Ma, Tong Lu, Nageshwar Budha, Jin Yan Jin, Jane R. Kenny, Harvey Wong, Cornelis E. C. A. Hop, Jialin Mao

Erschienen in: Clinical Pharmacokinetics | Ausgabe 6/2016

Einloggen, um Zugang zu erhalten

Abstract

Background and Objectives

Physiologically based pharmacokinetic (PBPK) modeling for itraconazole has been challenging due to highly variable in vitro d ata used for ‘bottom-up’ model building. Under-prediction of pharmacokinetics and drug–drug interactions (DDIs) following multiple doses of itraconazole has limited the use of PBPK model simulation to aid an itraconazole clinical DDI study design. The aim of this work is to develop an itraconazole PBPK model predominantly using a ‘top-down’ approach to enable a more accurate pharmacokinetic and DDI prediction.

Methods

An itraconazole PBPK model describing itraconazole and hydroxyl-itraconazole (OH-ITZ) was constructed in Simcyp®. The key parameters that govern the pharmacokinetic profile, including non-linear clearance (i.e., maximum rate of reaction [V max] and the Michaelis-Menten constant [K m]) and volume of distribution for both itraconazole and OH-ITZ, were redefined by leveraging existing in vivo data. Model verification was performed by comparing the simulated itraconazole and OH-ITZ pharmacokinetic profiles with the observed clinical data. Finally, the model was used to simulate clinical DDIs between itraconazole and midazolam.

Results

The developed PBPK model well-described the pharmacokinetics of itraconazole and OH-ITZ, and particularly captured their accumulation after repeated doses of itraconazole. This was verified with the observed data from 29 clinical studies where itraconazole solution or capsule was given as a single or multiple dose. The predicted DDI between itraconazole and midazolam was within 1.25-fold of the observed data for seven of ten studies and within 1.5-fold for nine of ten studies.

Conclusion

The improvement of the itraconazole PBPK model increased our confidence in using PBPK model simulations to optimize clinical itraconazole DDI study design.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Han B, Mao J, Chien JY, Hall SD. Optimization of drug-drug interaction study design: comparison of minimal physiologically based pharmacokinetic models on prediction of CYP3A inhibition by ketoconazole. Drug Metab Dispos. 2013;41(7):1329–38.CrossRefPubMed Han B, Mao J, Chien JY, Hall SD. Optimization of drug-drug interaction study design: comparison of minimal physiologically based pharmacokinetic models on prediction of CYP3A inhibition by ketoconazole. Drug Metab Dispos. 2013;41(7):1329–38.CrossRefPubMed
2.
Zurück zum Zitat Zhao P, Ragueneau-Majlessi I, Zhang L, Strong JM, Reynolds KS, Levy RH, et al. Quantitative evaluation of pharmacokinetic inhibition of CYP3A substrates by ketoconazole: a simulation study. J Clin Pharmacol. 2009;49(3):351–9.CrossRefPubMed Zhao P, Ragueneau-Majlessi I, Zhang L, Strong JM, Reynolds KS, Levy RH, et al. Quantitative evaluation of pharmacokinetic inhibition of CYP3A substrates by ketoconazole: a simulation study. J Clin Pharmacol. 2009;49(3):351–9.CrossRefPubMed
5.
Zurück zum Zitat Ke AB, Zamek-Gliszczynski MJ, Higgins JW, Hall SD. Itraconazole and clarithromycin as ketoconazole alternatives for clinical CYP3A inhibition studies. Clin Pharmacol Ther. 2014;95(5):473–6.CrossRefPubMed Ke AB, Zamek-Gliszczynski MJ, Higgins JW, Hall SD. Itraconazole and clarithromycin as ketoconazole alternatives for clinical CYP3A inhibition studies. Clin Pharmacol Ther. 2014;95(5):473–6.CrossRefPubMed
6.
Zurück zum Zitat Olkkola KT, Ahonen J, Neuvonen PJ. The effects of the systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analg. 1996;82(3):511–6.PubMed Olkkola KT, Ahonen J, Neuvonen PJ. The effects of the systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analg. 1996;82(3):511–6.PubMed
7.
Zurück zum Zitat Olkkola KT, Backman JT, Neuvonen PJ. Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther. 1994;55(5):481–5.CrossRefPubMed Olkkola KT, Backman JT, Neuvonen PJ. Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther. 1994;55(5):481–5.CrossRefPubMed
8.
Zurück zum Zitat Heykants J, Van Peer A, Van de Velde V, Van Rooy P, Meuldermans W, Lavrijsen K, et al. The clinical pharmacokinetics of itraconazole: an overview. Mycoses. 1989;32(Suppl 1):67–87.CrossRefPubMed Heykants J, Van Peer A, Van de Velde V, Van Rooy P, Meuldermans W, Lavrijsen K, et al. The clinical pharmacokinetics of itraconazole: an overview. Mycoses. 1989;32(Suppl 1):67–87.CrossRefPubMed
9.
Zurück zum Zitat Poirier JM, Cheymol G. Optimisation of itraconazole therapy using target drug concentrations. Clin Pharmacokinet. 1998;35(6):461–73.CrossRefPubMed Poirier JM, Cheymol G. Optimisation of itraconazole therapy using target drug concentrations. Clin Pharmacokinet. 1998;35(6):461–73.CrossRefPubMed
10.
Zurück zum Zitat Templeton I, Peng CC, Thummel KE, Davis C, Kunze KL, Isoherranen N. Accurate prediction of dose-dependent CYP3A4 inhibition by itraconazole and its metabolites from in vitro inhibition data. Clin Pharmacol Ther. 2010;88(4):499–505.CrossRefPubMedPubMedCentral Templeton I, Peng CC, Thummel KE, Davis C, Kunze KL, Isoherranen N. Accurate prediction of dose-dependent CYP3A4 inhibition by itraconazole and its metabolites from in vitro inhibition data. Clin Pharmacol Ther. 2010;88(4):499–505.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Isoherranen N, Kunze KL, Allen KE, Nelson WL, Thummel KE. Role of itraconazole metabolites in CYP3A4 inhibition. Drug Metab Dispos. 2004;32(10):1121–31.CrossRefPubMed Isoherranen N, Kunze KL, Allen KE, Nelson WL, Thummel KE. Role of itraconazole metabolites in CYP3A4 inhibition. Drug Metab Dispos. 2004;32(10):1121–31.CrossRefPubMed
12.
Zurück zum Zitat Mouton JW, van Peer A, de Beule K, Van Vliet A, Donnelly JP, Soons PA. Pharmacokinetics of itraconazole and hydroxyitraconazole in healthy subjects after single and multiple doses of a novel formulation. Antimicrob Agents Chemother. 2006;50(12):4096–102.CrossRefPubMedPubMedCentral Mouton JW, van Peer A, de Beule K, Van Vliet A, Donnelly JP, Soons PA. Pharmacokinetics of itraconazole and hydroxyitraconazole in healthy subjects after single and multiple doses of a novel formulation. Antimicrob Agents Chemother. 2006;50(12):4096–102.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Templeton IE, Thummel KE, Kharasch ED, Kunze KL, Hoffer C, Nelson WL, et al. Contribution of itraconazole metabolites to inhibition of CYP3A4 in vivo. Clin Pharmacol Ther. 2008;83(1):77–85.CrossRefPubMedPubMedCentral Templeton IE, Thummel KE, Kharasch ED, Kunze KL, Hoffer C, Nelson WL, et al. Contribution of itraconazole metabolites to inhibition of CYP3A4 in vivo. Clin Pharmacol Ther. 2008;83(1):77–85.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Van Peer A, Woestenborghs R, Heykants J, Gasparini R, Gauwenbergh G. The effects of food and dose on the oral systemic availability of itraconazole in healthy subjects. Eur J Clin Pharmacol. 1989;36(4):423–6.CrossRefPubMed Van Peer A, Woestenborghs R, Heykants J, Gasparini R, Gauwenbergh G. The effects of food and dose on the oral systemic availability of itraconazole in healthy subjects. Eur J Clin Pharmacol. 1989;36(4):423–6.CrossRefPubMed
15.
Zurück zum Zitat Van de Velde VJ, Van Peer AP, Heykants JJ, Woestenborghs RJ, Van Rooy P, De Beule KL, et al. Effect of food on the pharmacokinetics of a new hydroxypropyl-beta-cyclodextrin formulation of itraconazole. Pharmacotherapy. 1996;16(3):424–8.PubMed Van de Velde VJ, Van Peer AP, Heykants JJ, Woestenborghs RJ, Van Rooy P, De Beule KL, et al. Effect of food on the pharmacokinetics of a new hydroxypropyl-beta-cyclodextrin formulation of itraconazole. Pharmacotherapy. 1996;16(3):424–8.PubMed
16.
Zurück zum Zitat Barone JA, Moskovitz BL, Guarnieri J, Hassell AE, Colaizzi JL, Bierman RH, et al. Enhanced bioavailability of itraconazole in hydroxypropyl-beta-cyclodextrin solution versus capsules in healthy volunteers. Antimicrob Agents Chemother. 1998;42(7):1862–5.PubMedPubMedCentral Barone JA, Moskovitz BL, Guarnieri J, Hassell AE, Colaizzi JL, Bierman RH, et al. Enhanced bioavailability of itraconazole in hydroxypropyl-beta-cyclodextrin solution versus capsules in healthy volunteers. Antimicrob Agents Chemother. 1998;42(7):1862–5.PubMedPubMedCentral
17.
Zurück zum Zitat Gubbins PO, Gurley BJ, Williams DK, Penzak SR, McConnell SA, Franks AM, et al. Examining sex-related differences in enteric itraconazole metabolism in healthy adults using grapefruit juice. Eur J Clin Pharmacol. 2008;64(3):293–301.CrossRefPubMed Gubbins PO, Gurley BJ, Williams DK, Penzak SR, McConnell SA, Franks AM, et al. Examining sex-related differences in enteric itraconazole metabolism in healthy adults using grapefruit juice. Eur J Clin Pharmacol. 2008;64(3):293–301.CrossRefPubMed
18.
Zurück zum Zitat Barone JA, Moskovitz BL, Guarnieri J, Hassell AE, Colaizzi JL, Bierman RH, et al. Food interaction and steady-state pharmacokinetics of itraconazole oral solution in healthy volunteers. Pharmacotherapy. 1998;18(2):295–301.PubMed Barone JA, Moskovitz BL, Guarnieri J, Hassell AE, Colaizzi JL, Bierman RH, et al. Food interaction and steady-state pharmacokinetics of itraconazole oral solution in healthy volunteers. Pharmacotherapy. 1998;18(2):295–301.PubMed
19.
Zurück zum Zitat Gubbins PO, McConnell SA, Gurley BJ, Fincher TK, Franks AM, Williams DK, et al. Influence of grapefruit juice on the systemic availability of itraconazole oral solution in healthy adult volunteers. Pharmacotherapy. 2004;24(4):460–7.CrossRefPubMed Gubbins PO, McConnell SA, Gurley BJ, Fincher TK, Franks AM, Williams DK, et al. Influence of grapefruit juice on the systemic availability of itraconazole oral solution in healthy adult volunteers. Pharmacotherapy. 2004;24(4):460–7.CrossRefPubMed
20.
Zurück zum Zitat Kousoulos C, Tsatsou G, Apostolou C, Dotsikas Y, Loukas YL. Development of a high-throughput method for the determination of itraconazole and its hydroxy metabolite in human plasma, employing automated liquid-liquid extraction based on 96-well format plates and LC/MS/MS. Anal Bioanal Chem. 2006;384(1):199–207.CrossRefPubMed Kousoulos C, Tsatsou G, Apostolou C, Dotsikas Y, Loukas YL. Development of a high-throughput method for the determination of itraconazole and its hydroxy metabolite in human plasma, employing automated liquid-liquid extraction based on 96-well format plates and LC/MS/MS. Anal Bioanal Chem. 2006;384(1):199–207.CrossRefPubMed
21.
Zurück zum Zitat Yun HY, Baek MS, Park IS, Choi BK, Kwon KI. Comparative analysis of the effects of rice and bread meals on bioavailability of itraconazole using NONMEM in healthy volunteers. Eur J Clin Pharmacol. 2006;62(12):1033–9.CrossRefPubMed Yun HY, Baek MS, Park IS, Choi BK, Kwon KI. Comparative analysis of the effects of rice and bread meals on bioavailability of itraconazole using NONMEM in healthy volunteers. Eur J Clin Pharmacol. 2006;62(12):1033–9.CrossRefPubMed
22.
Zurück zum Zitat Hardin TC, Graybill JR, Fetchick R, Woestenborghs R, Rinaldi MG, Kuhn JG. Pharmacokinetics of itraconazole following oral administration to normal volunteers. Antimicrob Agents Chemother. 1988;32(9):1310–3.CrossRefPubMedPubMedCentral Hardin TC, Graybill JR, Fetchick R, Woestenborghs R, Rinaldi MG, Kuhn JG. Pharmacokinetics of itraconazole following oral administration to normal volunteers. Antimicrob Agents Chemother. 1988;32(9):1310–3.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Bharathi DV, Hotha KK, Sagar PV, Kumar SS, Reddy PR, Naidu A, et al. Development and validation of a highly sensitive and robust LC-MS/MS with electrospray ionization method for simultaneous quantitation of itraconazole and hydroxyitraconazole in human plasma: application to a bioequivalence study. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;868(1–2):70–6.CrossRefPubMed Bharathi DV, Hotha KK, Sagar PV, Kumar SS, Reddy PR, Naidu A, et al. Development and validation of a highly sensitive and robust LC-MS/MS with electrospray ionization method for simultaneous quantitation of itraconazole and hydroxyitraconazole in human plasma: application to a bioequivalence study. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;868(1–2):70–6.CrossRefPubMed
24.
Zurück zum Zitat Woestenborghs R, Lorreyne W, Heykants J. Determination of itraconazole in plasma and animal tissues by high-performance liquid chromatography. J Chromatogr. 1987;413:332–7.CrossRefPubMed Woestenborghs R, Lorreyne W, Heykants J. Determination of itraconazole in plasma and animal tissues by high-performance liquid chromatography. J Chromatogr. 1987;413:332–7.CrossRefPubMed
25.
Zurück zum Zitat Uno T, Shimizu M, Sugawara K, Tateishi T. Sensitive determination of itraconazole and its active metabolite in human plasma by column-switching high-performance liquid chromatography with ultraviolet detection. Ther Drug Monit. 2006;28(4):526–31.CrossRefPubMed Uno T, Shimizu M, Sugawara K, Tateishi T. Sensitive determination of itraconazole and its active metabolite in human plasma by column-switching high-performance liquid chromatography with ultraviolet detection. Ther Drug Monit. 2006;28(4):526–31.CrossRefPubMed
26.
Zurück zum Zitat Bae SK, Park SJ, Shim EJ, Mun JH, Kim EY, Shin JG, et al. Increased oral bioavailability of itraconazole and its active metabolite, 7-hydroxyitraconazole, when coadministered with a vitamin C beverage in healthy participants. J Clin Pharmacol. 2011;51(3):444–51.CrossRefPubMed Bae SK, Park SJ, Shim EJ, Mun JH, Kim EY, Shin JG, et al. Increased oral bioavailability of itraconazole and its active metabolite, 7-hydroxyitraconazole, when coadministered with a vitamin C beverage in healthy participants. J Clin Pharmacol. 2011;51(3):444–51.CrossRefPubMed
27.
Zurück zum Zitat Barone JA, Koh JG, Bierman RH, Colaizzi JL, Swanson KA, Gaffar MC, et al. Food interaction and steady-state pharmacokinetics of itraconazole capsules in healthy male volunteers. Antimicrob Agents Chemother. 1993;37(4):778–84.CrossRefPubMedPubMedCentral Barone JA, Koh JG, Bierman RH, Colaizzi JL, Swanson KA, Gaffar MC, et al. Food interaction and steady-state pharmacokinetics of itraconazole capsules in healthy male volunteers. Antimicrob Agents Chemother. 1993;37(4):778–84.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Lange D, Pavao JH, Wu J, Klausner M. Effect of a cola beverage on the bioavailability of itraconazole in the presence of H2 blockers. J Clin Pharmacol. 1997;37(6):535–40.CrossRefPubMed Lange D, Pavao JH, Wu J, Klausner M. Effect of a cola beverage on the bioavailability of itraconazole in the presence of H2 blockers. J Clin Pharmacol. 1997;37(6):535–40.CrossRefPubMed
29.
Zurück zum Zitat Ohkubo T, Osanai T. Determination of itraconazole in human plasma by high-performance liquid chromatography with solid-phase extraction. Ann Clin Biochem. 2005;42(Pt 2):94–8.CrossRefPubMed Ohkubo T, Osanai T. Determination of itraconazole in human plasma by high-performance liquid chromatography with solid-phase extraction. Ann Clin Biochem. 2005;42(Pt 2):94–8.CrossRefPubMed
30.
Zurück zum Zitat Miura M, Takahashi N, Nara M, Fujishima N, Kagaya H, Kameoka Y, et al. A simple, sensitive high-performance liquid chromatography-ultraviolet method for the quantification of concentration and steady-state pharmacokinetics of itraconazole and hydroxyitraconazole. Ann Clin Biochem. 2010;47(Pt 5):432–9.CrossRefPubMed Miura M, Takahashi N, Nara M, Fujishima N, Kagaya H, Kameoka Y, et al. A simple, sensitive high-performance liquid chromatography-ultraviolet method for the quantification of concentration and steady-state pharmacokinetics of itraconazole and hydroxyitraconazole. Ann Clin Biochem. 2010;47(Pt 5):432–9.CrossRefPubMed
31.
Zurück zum Zitat Ahonen J, Olkkola KT, Neuvonen PJ. Effect of itraconazole and terbinafine on the pharmacokinetics and pharmacodynamics of midazolam in healthy volunteers. Br J Clin Pharmacol. 1995;40(3):270–2.PubMedPubMedCentral Ahonen J, Olkkola KT, Neuvonen PJ. Effect of itraconazole and terbinafine on the pharmacokinetics and pharmacodynamics of midazolam in healthy volunteers. Br J Clin Pharmacol. 1995;40(3):270–2.PubMedPubMedCentral
32.
Zurück zum Zitat Backman JT, Kivistö KT, Olkkola KT, Neuvonen PJ. The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur J Clin Pharmacol. 1998;54(1):53–8.CrossRefPubMed Backman JT, Kivistö KT, Olkkola KT, Neuvonen PJ. The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur J Clin Pharmacol. 1998;54(1):53–8.CrossRefPubMed
33.
Zurück zum Zitat Lombardo F, Obach RS, Shalaeva MY, Gao F. Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics. J Med Chem. 2004;47(5):1242–50.CrossRefPubMed Lombardo F, Obach RS, Shalaeva MY, Gao F. Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics. J Med Chem. 2004;47(5):1242–50.CrossRefPubMed
34.
Zurück zum Zitat Rowland Yeo K, Jamei M, Yang J, Tucker GT, Rostami-Hodjegan A. Physiologically based mechanistic modelling to predict complex drug-drug interactions involving simultaneous competitive and time-dependent enzyme inhibition by parent compound and its metabolite in both liver and gut—the effect of diltiazem on the time-course of exposure to triazolam. Eur J Pharm Sci. 2010;39(5):298–309. Rowland Yeo K, Jamei M, Yang J, Tucker GT, Rostami-Hodjegan A. Physiologically based mechanistic modelling to predict complex drug-drug interactions involving simultaneous competitive and time-dependent enzyme inhibition by parent compound and its metabolite in both liver and gut—the effect of diltiazem on the time-course of exposure to triazolam. Eur J Pharm Sci. 2010;39(5):298–309.
35.
Zurück zum Zitat Toi A, Ohtani H, Tsujimoto M, Sawada Y. Pharmacokinetic modeling of the dosing interval dependency for the interaction between itraconazole and triazolam. Int J Clin Pharmacol Ther. 2010;48(6):356–66.CrossRefPubMed Toi A, Ohtani H, Tsujimoto M, Sawada Y. Pharmacokinetic modeling of the dosing interval dependency for the interaction between itraconazole and triazolam. Int J Clin Pharmacol Ther. 2010;48(6):356–66.CrossRefPubMed
36.
Zurück zum Zitat Yoo SD, Kang E, Jun H, Shin BS, Lee KC, Lee KH. Absorption, first-pass metabolism, and disposition of itraconazole in rats. Chem Pharm Bull (Tokyo). 2000;48(6):798–801.CrossRefPubMed Yoo SD, Kang E, Jun H, Shin BS, Lee KC, Lee KH. Absorption, first-pass metabolism, and disposition of itraconazole in rats. Chem Pharm Bull (Tokyo). 2000;48(6):798–801.CrossRefPubMed
37.
Zurück zum Zitat Waterhouse TH, Redmann S, Duffull SB, Eccleston JA. Optimal design for model discrimination and parameter estimation for itraconazole population pharmacokinetics in cystic fibrosis patients. J Pharmacokinet Pharmacodyn. 2005;32(3–4):521–45.CrossRefPubMed Waterhouse TH, Redmann S, Duffull SB, Eccleston JA. Optimal design for model discrimination and parameter estimation for itraconazole population pharmacokinetics in cystic fibrosis patients. J Pharmacokinet Pharmacodyn. 2005;32(3–4):521–45.CrossRefPubMed
38.
Zurück zum Zitat Arredondo G, Suárez E, Calvo R, Vazquez JA, García-Sanchez J, Martinez-Jordá R. Serum protein binding of itraconazole and fluconazole in patients with diabetes mellitus. J Antimicrob Chemother. 1999;43(2):305–7.CrossRefPubMed Arredondo G, Suárez E, Calvo R, Vazquez JA, García-Sanchez J, Martinez-Jordá R. Serum protein binding of itraconazole and fluconazole in patients with diabetes mellitus. J Antimicrob Chemother. 1999;43(2):305–7.CrossRefPubMed
39.
Zurück zum Zitat Ishigam M, Uchiyama M, Kondo T, Iwabuchi H, Inoue S, Takasaki W, et al. Inhibition of in vitro metabolism of simvastatin by itraconazole in humans and prediction of in vivo drug-drug interactions. Pharm Res. 2001;18(5):622–31.CrossRefPubMed Ishigam M, Uchiyama M, Kondo T, Iwabuchi H, Inoue S, Takasaki W, et al. Inhibition of in vitro metabolism of simvastatin by itraconazole in humans and prediction of in vivo drug-drug interactions. Pharm Res. 2001;18(5):622–31.CrossRefPubMed
40.
Zurück zum Zitat Liu L, Bello A, Dresser MJ, Heald D, Komjathy SF, O’Mara E, et al. Best practices for the use of itraconazole as a replacement for ketoconazole in drug-drug interaction studies. J Clin Pharmacol. 2015. doi:10.1002/jcph.562 (Epub 2015 Jun 4). Liu L, Bello A, Dresser MJ, Heald D, Komjathy SF, O’Mara E, et al. Best practices for the use of itraconazole as a replacement for ketoconazole in drug-drug interaction studies. J Clin Pharmacol. 2015. doi:10.​1002/​jcph.​562 (Epub 2015 Jun 4).
Metadaten
Titel
Development of a Physiologically Based Pharmacokinetic Model for Itraconazole Pharmacokinetics and Drug–Drug Interaction Prediction
verfasst von
Yuan Chen
Fang Ma
Tong Lu
Nageshwar Budha
Jin Yan Jin
Jane R. Kenny
Harvey Wong
Cornelis E. C. A. Hop
Jialin Mao
Publikationsdatum
21.12.2015
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 6/2016
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-015-0352-5

Weitere Artikel der Ausgabe 6/2016

Clinical Pharmacokinetics 6/2016 Zur Ausgabe