Skip to main content
main-content

06.12.2018 | Computed Tomography | Ausgabe 5/2019

European Radiology 5/2019

Development of a radiomics nomogram based on the 2D and 3D CT features to predict the survival of non-small cell lung cancer patients

Zeitschrift:
European Radiology > Ausgabe 5/2019
Autoren:
Lifeng Yang, Jingbo Yang, Xiaobo Zhou, Liyu Huang, Weiling Zhao, Tao Wang, Jian Zhuang, Jie Tian
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s00330-018-5770-y) contains supplementary material, which is available to authorized users.

Abstract

Objectives

The aim of this study was to develop a radiomics nomogram by combining the optimized radiomics signatures extracted from 2D and/or 3D CT images and clinical predictors to assess the overall survival of patients with non-small cell lung cancer (NSCLC).

Methods

One training cohort of 239 and two validation datasets of 80 and 52 NSCLC patients were enrolled in this study. Nine hundred seventy-five radiomics features were extracted from each patient’s 2D and 3D CT images. Least absolute shrinkage and selection operator (LASSO) regression was used to select features and generate a radiomics signature. Cox hazard survival analysis and Kaplan-Meier were performed in both cohorts. The radiomics nomogram was developed by integrating the optimized radiomics signature and clinical predictors, its calibration and discrimination were evaluated.

Results

The radiomics signatures were significantly associated with NSCLC patients’ survival time. The signature derived from the combined 2D and 3D features showed a better prognostic performance than those from 2D or 3D alone. Our radiomics nomogram integrated the optimal radiomics signature with clinical predictors showed a significant improvement in the prediction of patients’ survival compared with clinical predictors alone in the validation cohort. The calibration curve showed predicted survival time was very close to the actual one.

Conclusions

The radiomics signature from the combined 2D and 3D features further improved the predicted accuracy of survival prognosis for the patients with NSCLC. Combination of the optimal radiomics signature and clinical predictors performed better for individualied survival prognosis estimation in patients with NSCLC. These findings might affect trearment strategies and enable a step forward for precise medicine.

Key Points

• We found both 2D and 3D radiomics signature have favorable prognosis, but 3D signature had a better performance.
• The radiomics signature generated from the combined 2D and 3D features had a better predictive performance than those from 2D or 3D features.
• Integrating the optimal radiomics signature with clinical predictors significantly improved the predictive power in patients’ survival compared with clinical TNM staging alone.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag als Mediziner

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Weitere Produktempfehlungen anzeigen
Zusatzmaterial
Nur für berechtigte Nutzer zugänglich
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2019

European Radiology 5/2019 Zur Ausgabe
  1. Sie können e.Med Radiologie 14 Tage kostenlos testen (keine Print-Zeitschrift enthalten). Der Test läuft automatisch und formlos aus. Es kann nur einmal getestet werden.

Neu im Fachgebiet Radiologie

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Radiologie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise