Skip to main content

26.05.2016 | Original Article | Ausgabe 4/2016

Journal of Artificial Organs 4/2016

Development of a stent-biovalve with round-shaped leaflets: in vitro hydrodynamic evaluation for transcatheter pulmonary valve implantation (TPVI)

Journal of Artificial Organs > Ausgabe 4/2016
Hirohito Sumikura, Yasuhide Nakayama, Kentaro Ohnuma, Yoshiaki Takewa, Eisuke Tatsumi


This study evaluates a newly designed autologous heart valve-shaped tissue with a stent [stent-biovalve (SBV)] for transcatheter pulmonary valve implantation using the “in-body tissue architecture” technology. In the previously developed SBV with flat-shaped leaflets (FS-SBV), the valve could not close rapidly, because the leaflets were fixed in the open position, which induced regurgitant volume in the closing phase. Therefore, a novel mold to fabricate an SBV with round-shaped leaflets (RS-SBV) was developed, and its hydrodynamic performance with different valve diameters was evaluated in this study. A specially designed, self-expandable, stent-mounted, acrylic mold, which has 3 hemispheres, was placed in dorsal subcutaneous pouches of goats for 2 months. After extraction, the acrylic mold was removed from the implant, and a tubular tissue impregnated with the stent strut was obtained. Half of the tubular tissue with 3 hemispheres was completely folded in half inwards. The acrylic mold was designed, such that the folded half of the tubular tissue became the round-shaped leaflets. The 3 commissure parts were connected to form 3 leaflets, resulting in the preparation of the RS-SBV (internal diameter 25 mm). The RS-SBV closed more rapidly than the FS-SBV in a pulsatile mock circulation circuit under the pulmonary circulation conditions. The regurgitant fraction of the RS-SBV was approximately 6 %, which was lower than that of the FS-SBV. The appropriate pulmonary annulus diameter of the RS-SBV was from 24 to 25 mm based on the pressure difference and effective orifice area.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf

Über diesen Artikel

Weitere Artikel der Ausgabe 4/2016

Journal of Artificial Organs 4/2016 Zur Ausgabe

Neu im Fachgebiet Chirurgie

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Chirurgie und bleiben Sie gut informiert – ganz bequem per eMail.