Skip to main content
Erschienen in: Urolithiasis 4/2019

14.09.2018 | Original Paper

Development of a two-stage model system to investigate the mineralization mechanisms involved in idiopathic stone formation: stage 2 in vivo studies of stone growth on biomimetic Randall’s plaque

verfasst von: Allison L. O’Kell, Archana C. Lovett, Benjamin K. Canales, Laurie B. Gower, Saeed R. Khan

Erschienen in: Urolithiasis | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Abstract

Idiopathic stone formers often form calcium oxalate (CaOx) stones that are attached to calcium phosphate (CaP) deposits in the renal tissue, known as Randall’s plaques (RP). Plaques are suggested to originate in the renal tubular basement membrane and spread into the interstitial regions where collagen fibrils and vesicles become mineralized; if the epithelium is breached, the RP becomes overgrown with CaOx upon exposure to urine. We have developed a two-stage model system of CaP–CaOx composite stones, consisting of Stage (1) CaP mineralized plaque, followed by Stage (2) CaOx overgrowth into a stone. In our first paper in this series (Stage 1), osteopontin (and polyaspartate) were found to induce a non-classical mineralization of porcine kidney tissues, producing features that resemble RP. For the Stage 2 studies presented here, biomimetic RPs from Stage 1 were implanted into the bladders of rats. Hyperoxaluria was induced with ethylene glycol for comparison to controls (water). After 4 weeks, rats were sacrificed and the implants were analyzed using electron microscopy and X-ray microanalyses. Differences in crystal phase and morphologies based upon the macromolecules present in the biomimetic plaques suggest that the plaques have the capacity to modulate the crystallization reactions. As expected, mineral overgrowths on the implants switched from CaP (water) to CaOx (hyperoxaluric). The CaOx crystals were aggregated and mixed with organic material from the biomimetic RP, along with some amorphous and spherulitic CaOx near the “stone” surfaces, which seemed to have become compact and organized towards the periphery. This system was successful at inducing “stones” more similar to human idiopathic kidney stones than other published models.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
4.
5.
Zurück zum Zitat Singh P, Enders FT, Vaughan LE et al (2015) Stone composition among first-time symptomatic kidney stone formers in the community. Mayo Clin Proc 90:1356–1365CrossRefPubMedPubMedCentral Singh P, Enders FT, Vaughan LE et al (2015) Stone composition among first-time symptomatic kidney stone formers in the community. Mayo Clin Proc 90:1356–1365CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Evan AP, Worcester EM, Coe FL, Williams J, Lingeman JE (2015) Mechanisms of human kidney stone formation. Urolithiasis 43(Suppl 1):19–32CrossRefPubMed Evan AP, Worcester EM, Coe FL, Williams J, Lingeman JE (2015) Mechanisms of human kidney stone formation. Urolithiasis 43(Suppl 1):19–32CrossRefPubMed
7.
Zurück zum Zitat Evan AP, Lingeman JE, Coe FL et al (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Investig 111:607–616CrossRefPubMed Evan AP, Lingeman JE, Coe FL et al (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Investig 111:607–616CrossRefPubMed
8.
Zurück zum Zitat Stoller ML, Meng MV, Abrahams HM, Kane JP (2004) The primary stone event: a new hypothesis involving a vascular etiology. J Urol 171:1920–1924CrossRefPubMed Stoller ML, Meng MV, Abrahams HM, Kane JP (2004) The primary stone event: a new hypothesis involving a vascular etiology. J Urol 171:1920–1924CrossRefPubMed
9.
Zurück zum Zitat Bird VY, Khan SR (2017) How do stones form? Is unification of theories on stone formation possible? Arch Esp Urol 70:12–27PubMedPubMedCentral Bird VY, Khan SR (2017) How do stones form? Is unification of theories on stone formation possible? Arch Esp Urol 70:12–27PubMedPubMedCentral
10.
Zurück zum Zitat Hsi RS, Ramaswamy K, Ho SP, Stoller ML (2017) The origins of urinary stone disease: upstream mineral formations initiate downstream Randall’s plaque. BJU Int 119:177–184CrossRefPubMed Hsi RS, Ramaswamy K, Ho SP, Stoller ML (2017) The origins of urinary stone disease: upstream mineral formations initiate downstream Randall’s plaque. BJU Int 119:177–184CrossRefPubMed
11.
Zurück zum Zitat Mo L, Liaw L, Evan AP, Sommer AJ, Lieske JC, Wu XR (2007) Renal calcinosis and stone formation in mice lacking osteopontin, Tamm–Horsfall protein, or both. Am J Physiol Renal Physiol 293:F1935–F1943CrossRefPubMed Mo L, Liaw L, Evan AP, Sommer AJ, Lieske JC, Wu XR (2007) Renal calcinosis and stone formation in mice lacking osteopontin, Tamm–Horsfall protein, or both. Am J Physiol Renal Physiol 293:F1935–F1943CrossRefPubMed
12.
Zurück zum Zitat Khan SR, Glenton PA (2008) Calcium oxalate crystal deposition in kidneys of hypercalciuric mice with disrupted type IIa sodium-phosphate cotransporter. Am J Physiol Renal Physiol 294:F1109–F1115CrossRefPubMedPubMedCentral Khan SR, Glenton PA (2008) Calcium oxalate crystal deposition in kidneys of hypercalciuric mice with disrupted type IIa sodium-phosphate cotransporter. Am J Physiol Renal Physiol 294:F1109–F1115CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Liu Y, Mo L, Goldfarb DS et al (2010) Progressive renal papillary calcification and ureteral stone formation in mice deficient for Tamm–Horsfall protein. Am J Physiol Renal Physiol 299:F469–F478CrossRefPubMedPubMedCentral Liu Y, Mo L, Goldfarb DS et al (2010) Progressive renal papillary calcification and ureteral stone formation in mice deficient for Tamm–Horsfall protein. Am J Physiol Renal Physiol 299:F469–F478CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Khan SR, Canales BK (2011) Ultrastructural investigation of crystal deposits in Npt2a knockout mice: are they similar to human Randall’s plaques? J Urol 186:1107–1113CrossRefPubMedPubMedCentral Khan SR, Canales BK (2011) Ultrastructural investigation of crystal deposits in Npt2a knockout mice: are they similar to human Randall’s plaques? J Urol 186:1107–1113CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Wesson JA, Johnson RJ, Mazzali M et al (2003) Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. J Am Soc Nephrol 14:139–147CrossRefPubMed Wesson JA, Johnson RJ, Mazzali M et al (2003) Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. J Am Soc Nephrol 14:139–147CrossRefPubMed
17.
Zurück zum Zitat Khan SR, Hackett RL (1985) Developmental morphology of calcium oxalate foreign body stones in rats. Calcif Tissue Int 37:165–173CrossRefPubMed Khan SR, Hackett RL (1985) Developmental morphology of calcium oxalate foreign body stones in rats. Calcif Tissue Int 37:165–173CrossRefPubMed
18.
Zurück zum Zitat Khan SR, Hackett RL (1987) Urolithogenesis of mixed foreign body stones. J Urol 138:1321–1328CrossRefPubMed Khan SR, Hackett RL (1987) Urolithogenesis of mixed foreign body stones. J Urol 138:1321–1328CrossRefPubMed
19.
Zurück zum Zitat Vermeulen CW, Grove WJ, Goetz R, Ragins HD, Correll NO (1950) Experimental urolithiasis. I. Development of calculi upon foreign bodies surgically introduced into bladders of rats. J Urol 64:541–548CrossRefPubMed Vermeulen CW, Grove WJ, Goetz R, Ragins HD, Correll NO (1950) Experimental urolithiasis. I. Development of calculi upon foreign bodies surgically introduced into bladders of rats. J Urol 64:541–548CrossRefPubMed
20.
Zurück zum Zitat Chidambaram A, Rodriguez D, Khan S, Gower L (2015) Biomimetic Randall’s plaque as an in vitro model system for studying the role of acidic biopolymers in idiopathic stone formation. Urolithiasis 43(Suppl 1):77–92CrossRefPubMed Chidambaram A, Rodriguez D, Khan S, Gower L (2015) Biomimetic Randall’s plaque as an in vitro model system for studying the role of acidic biopolymers in idiopathic stone formation. Urolithiasis 43(Suppl 1):77–92CrossRefPubMed
21.
Zurück zum Zitat Gower LB (2008) Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev 108:4551–4627CrossRefPubMed Gower LB (2008) Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev 108:4551–4627CrossRefPubMed
22.
Zurück zum Zitat Gower L, Odom D (2000) Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J Cryst Growth 210:719–734CrossRef Gower L, Odom D (2000) Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J Cryst Growth 210:719–734CrossRef
23.
Zurück zum Zitat Wolf SE, Harris J, Lovett A, Gower L (2017) Non-classical crystallization processes: potential relevance to stone formation. In: Coe F, Worcester EM, Lingeman JE, Evan AP (eds) Kidney stones: medical and surgical management. Jaypee Brothers, Medical Publishers Pvt. Ltd, Philadelphia Wolf SE, Harris J, Lovett A, Gower L (2017) Non-classical crystallization processes: potential relevance to stone formation. In: Coe F, Worcester EM, Lingeman JE, Evan AP (eds) Kidney stones: medical and surgical management. Jaypee Brothers, Medical Publishers Pvt. Ltd, Philadelphia
24.
Zurück zum Zitat Amos FF, Dai L, Kumar R, Khan SR, Gower LB (2009) Mechanism of formation of concentrically laminated spherules: implication to Randall’s plaque and stone formation. Urol Res 37:11–17CrossRefPubMed Amos FF, Dai L, Kumar R, Khan SR, Gower LB (2009) Mechanism of formation of concentrically laminated spherules: implication to Randall’s plaque and stone formation. Urol Res 37:11–17CrossRefPubMed
25.
Zurück zum Zitat Amos FF, Olszta MJ, Khan SR, Gower LB (2006) Relevance of a polymer-induced liquid-precursor (PILP) mineralization process to normal and pathological biomineralization. In: Königsberger E, Königsberger L (eds) Biomineralization—medical aspects of solubility. Wiley, West Sussex, pp 125–127CrossRef Amos FF, Olszta MJ, Khan SR, Gower LB (2006) Relevance of a polymer-induced liquid-precursor (PILP) mineralization process to normal and pathological biomineralization. In: Königsberger E, Königsberger L (eds) Biomineralization—medical aspects of solubility. Wiley, West Sussex, pp 125–127CrossRef
26.
Zurück zum Zitat Gower LB, Amos FF, Khan SR (2010) Mineralogical signatures of stone formation mechanisms. Urol Res 38:281–292CrossRefPubMed Gower LB, Amos FF, Khan SR (2010) Mineralogical signatures of stone formation mechanisms. Urol Res 38:281–292CrossRefPubMed
28.
Zurück zum Zitat Ross EA, Williams MJ, Hamazaki T et al (2009) Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol 20:2338–2347CrossRefPubMedPubMedCentral Ross EA, Williams MJ, Hamazaki T et al (2009) Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol 20:2338–2347CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Khan SR, Hackett RL (1986) Identification of urinary stone and sediment crystals by scanning electron microscopy and X-ray microanalysis. J Urol 135:818–825CrossRefPubMed Khan SR, Hackett RL (1986) Identification of urinary stone and sediment crystals by scanning electron microscopy and X-ray microanalysis. J Urol 135:818–825CrossRefPubMed
30.
Zurück zum Zitat Graeser S, Postl W, Bojar H-P et al (2008) Struvite-(K), KMgPO4· 6H2O, the potassium equivalent of struvite—a new mineral. Eur J Miner 20:629–633CrossRef Graeser S, Postl W, Bojar H-P et al (2008) Struvite-(K), KMgPO4· 6H2O, the potassium equivalent of struvite—a new mineral. Eur J Miner 20:629–633CrossRef
31.
Zurück zum Zitat Wilsenach JA, Schuurbiers CA, van Loosdrecht MC (2007) Phosphate and potassium recovery from source separated urine through struvite precipitation. Water Res 41:458–466CrossRefPubMed Wilsenach JA, Schuurbiers CA, van Loosdrecht MC (2007) Phosphate and potassium recovery from source separated urine through struvite precipitation. Water Res 41:458–466CrossRefPubMed
32.
Zurück zum Zitat Khan SR, Finlayson B, Hackett RL (1983) Experimental induction of crystalluria in rats using mini-osmotic pumps. Urol Res 11:199–205CrossRefPubMed Khan SR, Finlayson B, Hackett RL (1983) Experimental induction of crystalluria in rats using mini-osmotic pumps. Urol Res 11:199–205CrossRefPubMed
33.
Zurück zum Zitat Khan SR, Glenton PA (1995) Deposition of calcium phosphate and calcium oxalate crystals in the kidneys. J Urol 153:811–817CrossRefPubMed Khan SR, Glenton PA (1995) Deposition of calcium phosphate and calcium oxalate crystals in the kidneys. J Urol 153:811–817CrossRefPubMed
34.
Zurück zum Zitat Parks JH, Coe FL, Evan AP, Worcester EM (2009) Urine pH in renal calcium stone formers who do and do not increase stone phosphate content with time. Nephrol Dial Transplant 24:130–136CrossRefPubMed Parks JH, Coe FL, Evan AP, Worcester EM (2009) Urine pH in renal calcium stone formers who do and do not increase stone phosphate content with time. Nephrol Dial Transplant 24:130–136CrossRefPubMed
35.
Zurück zum Zitat Hallson PC, Rose GA (1989) Measurement of calcium phosphate crystalluria: influence of pH and osmolality and invariable presence of oxalate. Br J Urol 64:458–462CrossRefPubMed Hallson PC, Rose GA (1989) Measurement of calcium phosphate crystalluria: influence of pH and osmolality and invariable presence of oxalate. Br J Urol 64:458–462CrossRefPubMed
36.
Zurück zum Zitat Spradling K, Vernez SL, Khoyliar C et al (2016) Prevalence of hyperoxaluria in urinary stone formers: chronological and geographical trends and a literature review. J Endourol 30:469–475CrossRefPubMed Spradling K, Vernez SL, Khoyliar C et al (2016) Prevalence of hyperoxaluria in urinary stone formers: chronological and geographical trends and a literature review. J Endourol 30:469–475CrossRefPubMed
37.
Zurück zum Zitat Daudon M, Letavernier E, Frochot V, Haymann J-P, Bazin D, Jungers P (2016) Respective influence of calcium and oxalate urine concentration on the formation of calcium oxalate monohydrate or dihydrate crystals. C R Chim 19:1504–1513CrossRef Daudon M, Letavernier E, Frochot V, Haymann J-P, Bazin D, Jungers P (2016) Respective influence of calcium and oxalate urine concentration on the formation of calcium oxalate monohydrate or dihydrate crystals. C R Chim 19:1504–1513CrossRef
38.
Zurück zum Zitat Wesson JA, Worcester E (1996) Formation of hydrated calcium oxalates in the presence of poly-l-aspartic acid. Scanning Microsc 10:415–423 (423–414)PubMed Wesson JA, Worcester E (1996) Formation of hydrated calcium oxalates in the presence of poly-l-aspartic acid. Scanning Microsc 10:415–423 (423–414)PubMed
39.
Zurück zum Zitat Sethmann I, Wendt-Nordahl G, Knoll T, Enzmann F, Simon L, Kleebe HJ (2017) Microstructures of Randall’s plaques and their interfaces with calcium oxalate monohydrate kidney stones reflect underlying mineral precipitation mechanisms. Urolithiasis 45:235–248CrossRefPubMed Sethmann I, Wendt-Nordahl G, Knoll T, Enzmann F, Simon L, Kleebe HJ (2017) Microstructures of Randall’s plaques and their interfaces with calcium oxalate monohydrate kidney stones reflect underlying mineral precipitation mechanisms. Urolithiasis 45:235–248CrossRefPubMed
40.
Zurück zum Zitat Khan SR (2004) Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissue-culture studies. Clin Exp Nephrol 8:75–88CrossRefPubMed Khan SR (2004) Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissue-culture studies. Clin Exp Nephrol 8:75–88CrossRefPubMed
41.
Zurück zum Zitat Grases F, Costa-Bauza A, Gomila I, Conte A (2010) Origin and types of calcium oxalate monohydrate papillary renal calculi. Urology 76:1339–1345CrossRefPubMed Grases F, Costa-Bauza A, Gomila I, Conte A (2010) Origin and types of calcium oxalate monohydrate papillary renal calculi. Urology 76:1339–1345CrossRefPubMed
42.
Zurück zum Zitat Frochot V, Daudon M (2016) Clinical value of crystalluria and quantitative morphoconstitutional analysis of urinary calculi. Int J Surg 36:624–632CrossRefPubMed Frochot V, Daudon M (2016) Clinical value of crystalluria and quantitative morphoconstitutional analysis of urinary calculi. Int J Surg 36:624–632CrossRefPubMed
Metadaten
Titel
Development of a two-stage model system to investigate the mineralization mechanisms involved in idiopathic stone formation: stage 2 in vivo studies of stone growth on biomimetic Randall’s plaque
verfasst von
Allison L. O’Kell
Archana C. Lovett
Benjamin K. Canales
Laurie B. Gower
Saeed R. Khan
Publikationsdatum
14.09.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Urolithiasis / Ausgabe 4/2019
Print ISSN: 2194-7228
Elektronische ISSN: 2194-7236
DOI
https://doi.org/10.1007/s00240-018-1079-1

Weitere Artikel der Ausgabe 4/2019

Urolithiasis 4/2019 Zur Ausgabe

Update Urologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.