Skip to main content
Erschienen in: World Journal of Surgical Oncology 1/2017

Open Access 01.12.2017 | Research

Diabetes and beta-adrenergic blockage are risk factors for metastatic prostate cancer

verfasst von: Malte Krönig, Christian Haverkamp, Antonia Schulte, Laura Heinicke, Kathrin Schaal, Vanessa Drendel, Martin Werner, Ulrich Wetterauer, Wolfgang Schultze-Seemann, Cordula Annette Jilg

Erschienen in: World Journal of Surgical Oncology | Ausgabe 1/2017

Abstract

Background

We evaluated the influence of comorbidity inferred risks for lymph node metastasis (pN1) and positive surgical margins (R1) after radical prostatectomy in order to optimize pretherapeutic risk classification.
We analyzed 454 patients after radical prostatectomy (RP) between 2009 and 2014. Comorbidities were defined by patients’ medication from our electronic patient chart and stratified according to the ATC WHO code. Endpoints were lymph node metastasis (pN1) and positive surgical margins (R1).

Results

Rates for pN1 and R1 were 21.4% (97/454) and 29.3% (133/454), respectively. In addition to CAPRA and Gleason score, we identified diabetes as a significant medication inferred risk factor for pN1 (OR 2.9, p = 0.004/OR 3.2, p = 0.001/OR 3.5, p = 0.001) and beta-blockers for R1 (OR 1.9, p = 0.020/OR 2.9, p = 0.004). Patients with diabetes showed no statistically significant difference in Gleason score, CAPRA Score, PSA, and age compared to non-diabetic patients.

Conclusions

We identified diabetes and beta1 adrenergic blockage as significant risk factors for lymph node metastasis and positive surgical margins in prostate cancer (PCa). Patients at risk will need intensive pretherapeutic staging for optimal therapeutic stratification.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s12957-017-1117-4) contains supplementary material, which is available to authorized users.

Background

Prostate cancer (PCa) is the second most common cancer and third most leading cause of death of men in the western world [1]. Correct risk stratification is crucial for optimal of high-risk patients and avoiding overtreatment in low-risk patients. Risk stratification is based on histologic analysis of invasive prostate biopsies, which are indicated by elevated prostate-specific antigen (PSA) levels or suspicious digital rectal examination (DRE) findings. Several risk classification tools exist for pretherapeutic stratification such as Kattan normograms [2], D’Amico score [3, 4] or CAPRA (Cancer of Prostate Risk Assessment) score [57]. All scores are based primarily on PSA levels (ng/ml), Gleason score, and age (years) and have biochemical recurrence within 5 years after radical prostatectomy as primary endpoint. The mentioned scores stratify patients into low-, intermediate-, and high-risk groups. However, identifying patients with preexisting lymph node metastases (cN1) or non-organ defined tumors (R1) remains difficult, but these parameters significantly determine the therapeutic strategy. Imaging which provide detailed information for cN status and R status, such as magnetic resonance imaging (MRI) or positron emission computer tomography (PET/CT) (e.g., PSMA-PET/CT), cannot be performed in every patient for economic and availability reasons. cN1 status would require extended lymphadenectomy during radical prostatectomy or extended field radiation in primary radiation therapy. Extended staging using MRI is recommended for high-risk patients with PSA > 10 ng/ml or Gleason score ≥ 8–10 [8] only in the European guidelines for prostate cancer. In order to find further risk stratifier, comorbidities have come into the focus with possible implications on cancer genesis, stage, progression, and therapy [9, 10]. Data are still conflicting, and exact mechanism regarding stage and prognosis are not understood. Among the comorbidities, diabetes is one of the better examined and most common diseases with an estimated 269 million people affected worldwide [11]. Interestingly, a reduced risk for developing PCa has been described for diabetes patients [11]; however, little is known about the impact on cancer stage. We have therefore used our electronic patient chart to generate the prostate cancer patients’ comorbidity profile by the self-medication during hospitalization for radical prostatectomy. We assessed the comorbidity profile’s impact on cancer stage at diagnosis represented by R status and pN status as the key determinants of primary and adjuvant therapeutical strategy.

Methods

We included 454 patients with prostate cancer, who were treated with radical prostatectomy (RP) between 2009 and 2014 (median age 66 years, interquartile range (IQR 61.0–71.0). The same surgical team operated these patients with equal experience. Comorbidities were defined by patients’ self-medication during hospitalization for radical prostatectomy. Medications were generated from our electronic patient chart (Meona©) and stratified according to the ATC (Anatomic Therapeutic Chemical) WHO code at the time of the RP.

ATC code

Anatomical Therapeutic Chemical (ATC) classification system divides the active substances into different groups according to the organ or system on which they act and their therapeutic, pharmacological, and chemical properties. Drugs are classified in groups at five different levels. The drugs are divided into 14 main groups (1st level), with pharmacological/therapeutic subgroups (2nd level). The 3rd and 4th levels are chemical/pharmacological/therapeutic subgroups, and the 5th level is the chemical substance [12].

CAPRA score

Cancer of the Prostate Risk Assessment CAPRA [1316] score was used for pretherapeutic risk classification. The score includes PSA at diagnosis (ng/ml), Gleason pattern of the biopsy (primary/secondary), age (years), and positive biopsy cores (percent of total number of biopsies) as variables (Additional file 1: Table S1), which are weighted differently according to the value.

Endpoints

Endpoints were lymph node metastasis (pN1) and positive surgical margins (R1) after radical prostatectomy based on the histopathologic analysis of the radical prostatectomy specimens including lymph nodes. Specimens were routinely processed, and analysis was performed on paraffin embedded, cut, and H&E-stained samples.

Statistics

Descriptive statistics was done by calculating mean ± standard deviation (SD), median, and interquartile range (IQR). Logistic and linear regression analyses were used for identifying risk factors using SPSS© software (SPSS statistics 22, IBM) calculated as odds ratio (OR) and p value.

Results

Four hundred fifty-four prostate cancer patients after radical prostatectomy were analyzed in this study. Patients’ median age was 66.0 years (IQR 61.0–70.0) and median iPSA 8.55 ng/ml (IQR 5.67–14.43). 18.5% (85/454), 39.88% (181/454), and 41.41% (188/454) showed CAPRA score 1–2, 3–5 and 6–10, respectively. Histopathology from prostatectomy and lymphadenectomy showed in 11.7% (53/454), 62.33% (283/454), and 25.99% (118/454) Gleason score 6, 7, and 8–10 (Table 1). Rates for pN1 and R1 were 21.37% (97/454) and 29.30% (133/454), respectively (Table 1).
Table 1
Patients’ characteristics (n = 454)
Age at radical prostatectomy (years)
 Mean/±SD/median/IQR
65.3/6.7/66.0/61.0–70.0
PSA at radical prostatcetomy (ng/ml)
 Mean/±SD/median/IQR
13.8/24.4/8.6/5.6–14.4
Gleason score at biopsy (n)
 % (n/total)
 
 8–10
25.9 (118/454)
 7
62.3 (283/454)
 6
11.7 (53/454)
Gleason score at radical prostatectomy (n)
 % (n/total)
 
 8–10
21.2 (96/454)
 7
60.6 (275/454)
 6
18.3 (83/454)
T stage at biopsy (n)
 % (n/total)
 
 4
1.9 (9/454)
 3
36.8 (167/454)
 2
61.2 (278/454)
T stage at radical prostatectomy (n)
 % (n/total)
 
 4
0.7 (3/454)
 3
34.8 (158/454)
 2
64.3 (292/454)
CAPRA score at biopsy (n)
 % (n/total)
 
 6–10 (high risk)
41.4 (188/454)
 3–5 (intermediate risk)
39.8 (181/454)
 1–2 (low risk)
18.5 (85/454)
Positive lymph nodes (N+) at radical prostatectomy (n)
 % (n/total)
21.3 (97/545)
Positive surgical margin (R+) at radical prostatectomy (n)
 % (n/total)
29.3 (133/454)
PSA prostate specific antigen, CAPRA Cancer of the Prostate Risk Assessment
A median of 2 (IQR 1–4) medications from 2 (IQR 1–4) comorbidity level 1 classes were taken per patient. 14.9% (68/454), 54.2% (246/454), 29.7% (135/454), and 1.1% (5/454) of the patients took 0, 1–3, 4–9, and 10–15 medications (Table 5). From clinical parameters such as age (years), PSA (ng/ml), Gleason score, and CAPRA score, we identified CAPRA score and Gleason score as significant risk factors for N1 (OR 3.200, p = 0.001/OR 3.454, p = 0.001) and CAPRA score for R1 (OR 2.916, p = 0.004) (Table 4). Patients with diabetes showed no statistically significant difference in Gleason score (p = 0.499), CAPRA score (p = 0.495), PSA (p = 0.668), and age (p = 0.537) compared to non-diabetic patients.
Patients took 157 different types of medications from 9 major comorbidity classes according to the ATC code level 1 [12] (Table 2). 14.89% (68/454), 54.19% (246/454), 29.74% (135/454), and 1.1% (5/454) took 0, 1–3, 4–9, and greater 10 medications at time of radical prostatectomy. Patients took medication for cardiovascular system (C) 68.28% (310/454), alimentary tract (A) 33.70% (153/454), blood system (B) 27.53% (125/454), genitourinary system (G) 12.78% (58/454), hormonal system (H) 10.35% (47/454), nervous system (N) 8.81% (40/454), respiratory system (R) 3.52% (16/454), sensory system (S) 3.08% (14/454), and immune system (L) 0.66% (3/454) (Table 2).
Table 2
Characteristics of comorbidities (ATC code level 1, distribution and regression analyses)
ATC code level 1
Distribution
Positive surgical margin (R1)
Lymph node metasasis (N1)
% (n/total)
OR/p value
OR/p value
Cardiovascular system C
68.28 (310/454)
1.164/0.531
0.904/0.715
Alimentary tract A
33.70 (153/454)
0.864/0.525
1.370/0.203
Blood system B
27.53 (125/454)
1.068/0.789
1.927/0.63
Urinary system G
12.78 (58/454)
0.748/0.382
1.263/0.480
Hormonal system H
10.35 (47/454)
1.356/0.355
1.203/0.621
Nervous system N
8.81 (40/454)
1.662/0.148
1.214/0.617
Respiratory system R
3.52 (16/454)
1.305/0.622
0.431/0.283
Sensory system S
3.08 (14/454)
2.284/0.139
0.913/0.894
Immune system L
0.66 (3/454)
1.216/0.875
0.000/0.999
ATC level 1: level 1 of the Anatomic Therapeutic Chemical (ATC) code describes anatomic organ systems; OR odds ratio
Analysis of the ATC code on level 2 showed top 10 medications to be renin angiotensin system (C09) 44.49% (202/454), beta-blockers (C07) 32.28% (147(454), antithrombosis (B01) 27.53% (125/454), lipid modifyers (C10) 26.21% (110/454), acid disorders (A02) 23.57% (107/454), calcium channel blockers (C08) 17.18% (78/454), diuretics (C03) 14.32% (65/454), urologicals (G04) 12.78% (58/454), thyroid therapy (H03) 10.13%(46/454), and diabetes (A10) 9.25% (42/454) (Table 3).
Table 3
Characteristics of comorbidities (ATC code level 2, distribution and regression analyses)
ATC code level 2
Comorbidity system
Distribution
Positive surgical margin (R1)
Lymph node metastasis (N1)
% (n/n)
OR/p value
OR/p value
C09
Renin angiotensin system
44.5 (202/454)
0.999/0.997
1.344/0.255
C07
Beta-blockers
32.3 (147(454)
1.929/0.020
0.953/0.878
B01
Antithrombosis
27.5 (125/454)
1.063/0.829
1.821/0.52
C10
Lipid modifiers
26.2 (110/454)
0.867/0.616
0.982/0.995
A02
Acid disorders
23.6 (107/454)
0.954/0.860
1.127/0.679
C08
Calcium channel blockers
17.2 (78/454)
0.702/0.311
0.523/0.126
C03
Diuretics
14.3 (65/454)
1.174/0.626
0.779/0.510
G04
Urologicals
12.8 (58/454)
0.653/0.232
1.346/0.387
H03
Thyroid therapy
10.1 (46/454)
1.227/0.557
1.253/0.559
A10
Diabetes
9.3 (42/454)
1.092/0.811
2.869/0.004
A07
Diarrhea, inflammation
5.1 (23/454)
0.240/0.074
0.515/0.387
N06
Psychoanaleptics
4.4 (20/454)
1.172/0.761
0.761/0.653
C01
Cardiac therapy
3.9 (18/454)
0.559/0.346
0.550/0.396
R03
Anti asthmatics
3.3 (15/454)
1.009/0.989
0.143/0.148
N05
Psycholeptics
3.1 (14/454)
1.114/0.860
2.254/0.177
C02
Antihypertensives
2.6 (12/454)
0.220/0.158
1.459/0.619
N03
Antiepileptics
1.8 (8/454)
6.048/0.051
2.824/0.306
S01
Opthalmologicals
1.5 (7/154)
2.560/0.334
0.755/0.875
A03
Functional gastroint, disorders
0.7 (3/454)
2.778/0.476
1.078/0.963
L04
Immunosuppression
0.7 (3/454)
3.537/0.361
0.0/0.999
N04
Anti parkinson drugs
0.7 (3/454)
3.956/0.276
0.0 / 0.999
A01
Stomatologic disorders
0.4 (2/454)
0.0/0.999
1.770/0.770
R01
Nasal corticoides
0.4 /2/454)
0.0/0.999
10.577/0.287
Subgroupanalysis
 Diabetes
Insulin
4.2 (19/454)
1090/0.882
Metformin
7.7 (35/454)
2.989/0.009
 Beta-blockers
Carvedilol
1.9 (9/454)
0.341/0.314
Metoprolol
8.9 (40/454)
2.400/0.010
Bisoprolol
14.8 (67/454)
1.202/0.533
Nebivolol
2.4 (11/454)
2.884/0.090
ATC level 2: level 2 of the Anatomic Therapeutic Chemical (ATC) code describes anatomic or chemical systems within the body or in specific organs; OR odds ratio; italic = statistically significant OR
Logistic regression analysis on ATC code level 1 did not show significantly increased risk for pN1 or R1 status whereas regression analysis on ATC code level 2 did show significantly increased risk for pN1 in patients with diabetes (OR 2.869, p = 0.004) and beta1 blockers for R1 (OR 1.929, p = 0.020). Subgroup analysis showed significantly increased risk for N1 in patients taking metformin (OR 2.989, p = 0.010) and R1 for patients taking beta1 selective blocker metoprolol (OR 2.400, p = 0.010). The number of medications per patient and the number of medicated organ systems per patient did not show statistically significant risk increase for either N1 or R1 (Table 3).

Discussion

In this study, we identified diabetes (OR 2.869) and beta-blockage (OR 1.929) as significant risk factors for the existence of lymph metastases (pN1) and non-organ confined (R1) prostate cancer in patients at radical prostatectomy. The comorbidity profile of each patient was defined as the self-medication, which is not associated to hospitalization. More comorbidities might have been present within the cohort, which were missed by this method. However, our methods allow for a detailed analysis of the comorbidities on the organ system level down to single medications utilizing the WHO ATC code. Within the diabetes group, e.g., we identified metformin and in the beta1 selective blockage group metoprolol as single risk factors for pN1 and R1, respectively.
Comorbidities have been associated with tumor genesis and progression, results however remain controversial. Several studies show that the effect can be protective or associated with increased cancer risk in different organs [17]. Especially, diabetes and beta-adrenergic signaling have been associated with carcinogenesis for a long time.
Lipscomb et al. [18] showed that diabetic women (n = 6115) have an increased risk (OR 1.16) for developing lymph node positive breast cancer. Obesity or increased BMI are not associated with increased risk for lymph node metastases [19] in breast cancer. We could not identify a study, which specifically analyzed the association between diabetes and nodal status of prostate cancer in a PubMed search until today.
Several studies describe a medication inferred decreased risk for developing prostate cancer: Margel et al. [20] showed in 12,000 prostate cancer patients that, e.g., metformin users had decreased risk (OR 0.66) for developing prostate cancer. Preston et al. [21] showed in 120,000 diabetic men that metformin was not associated with decreased risk for developing prostate cancer in general or high-grade prostate cancer. A meta-analysis by Bansal et al. [22] concluded from 8.1 million patients including 120,000 prostate cancer patients that diabetes significantly lowers the risk (RR 0.86) for developing prostate cancer. Li et al. [23] report opposite results in a cohort of 22,000 men with increased risk for developing high-grade prostate cancer in men with diabetes.
Despite the high numbers of studies showing a protective effect of diabetes on cancer genesis, little is known about the influence of diabetes in men with prostate cancer. Also, on the mechanistic level, it was shown that diabetes alters the lymphatic vessel architecture and promotes vessel evasion of the tumor cells [24]. Our clinical findings could be explained by the latter results (Table 4). However, further studies have to validate our findings.
Table 4
Regression analysis for clinical risk factors
Variables
Positive surgical margin (R1)
Lymph node metasasis (N1)
OR/p value
OR/p value
Age (years)
0.987/0.334
1.623/0.105
PSA (ng/ml)
0.848/0.397
1.140/0.255
Gleason score (6–10)
1.037/0.300
3.454/0.001
CAPRA score (1–5)
2.916/0.004
3.200/0.001
PSA prostate specific antigen, CAPRA Cancer of the Prostate Risk Assessment; OR odds ratio; italic = statistically significant OR
Also, beta-adrenergic signaling has been associated with advanced prostate cancer [25] and beta-blockers have been associated reduced mortality in various tumor types [25]. The prostate, especially the peripheral zone where most of the tumors originate, shows high adrenergic innervation [25]. Especially, beta2 receptor subtypes were detected in the peripheral zone. This could explain a possible protective effect by unselective beta-blockage such as carvedilol; however, the effect in our analysis was statistically not significant. The luminal epithelial cells which are suspected as the originating cells for prostate cancer show high expression for beta-adrenergic receptors in the malignant and benign state and thus connect the nervous system to the tumor [26]. Magnon et al. [27] showed that beta-adrenergic and cholinergic nerves play an important role in prostate cancer genesis and progression, by actively infiltrating the tumor. Perineural nerve sheath infiltration by the tumor also serves as an independent negative predictor for disease free survival [28]. Furthermore, beta-blockers were associated, we improved survival in prostate cancer patients [29]. Even though beta-blockers seem to have protective effects on long term survival, the underlying disease with an activated adrenergic system could well explain the increased risk for R1 disease in prostate cancer patients in our cohort. Further studies will have validate our results. Only scarce data is available upon alpha-adrenergic signaling and cancer. Some studies show inhibitory effects on cancer cells by alpha-adrenergic blockage [3032].
Limitation of this study is the fact that comorbidities were defined only by self-medication. Additional comorbidities not reflected by the medication were not analyzed. Furthermore, dosage and duration of the medications were not considered.
We were able to show that together with the established stratification markers such as Gleason score or the CAPRA score, medication profiles can further aid in identifying men at high risk for advanced and aggressive prostate cancer (Table 5).
Table 5
Medication characteristics per patient
Number of mediaction systems/patient
 mean/±SD/median/IQR
2.544/2.059/2.0/1–4
Number of medications/patient
 mean/±SD/median/IQR
2.7/2.322/2.0/1–4
Number of medications/patient
 % (n/total)
 
 10–15
1.1 (5/454)
 4–9
29.7 (135/454)
 1–3
54.2 (246/454)
 0
14.9 (68/454)

Conclusions

Diabetes and beta-blockage are major risk factors for advanced prostate cancer, which should be incorporated into the pretherapeutic staging strategy and into the planning of definite therapy to allow for optimal results for our patients. The usage of electronic patient charts represent a powerful tool to analyze risk structures within patient cohorts. They could also be used to incorporate medication-based risk factors, which will automatically alert the physicians for high-risk patients.

Acknowledgements

Does not apply.

Funding

The study has been funded from the Department of Urology itself.

Availability of data and materials

All data will be available upon request from the authors.

Authors’ contributions

MK and CJ designed the study, analyzed the data, and wrote the manuscript. CH, AS, KS, and LH acquired the medication data. VD and MW performed histologic analysis of the radical prostatectomy specimens. UW, CJ, and WS performed radical prostatectomies. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
The study does not use personalized data, and hence, a consent for publication does not apply.
All patient gave written consent prior to data collection. The study has been approved by the Ethics Committee of the University of Freiburg (Engelberger Straße 21 79106 Freiburg) under the reference number 416/11.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Howlader N NA, Krapcho M, Miller D, Bishop K, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER Cancer Statistics Review, 1975-2013, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2013/, based on November 2015 SEER data submission, posted to the SEER web site, April 2016. 2016. Howlader N NA, Krapcho M, Miller D, Bishop K, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER Cancer Statistics Review, 1975-2013, National Cancer Institute. Bethesda, MD, http://​seer.​cancer.​gov/​csr/​1975_​2013/​, based on November 2015 SEER data submission, posted to the SEER web site, April 2016. 2016.
2.
Zurück zum Zitat Shariat SF, Karakiewicz PI, Roehrborn CG, Kattan MW. An updated catalog of prostate cancer predictive tools. Cancer. 2008;113:3075–99.CrossRefPubMed Shariat SF, Karakiewicz PI, Roehrborn CG, Kattan MW. An updated catalog of prostate cancer predictive tools. Cancer. 2008;113:3075–99.CrossRefPubMed
3.
Zurück zum Zitat Hernandez DJ, Nielsen ME, Han M, Partin AW. Contemporary evaluation of the Dʼamico risk classification of prostate cancer. Urology. 2007;70:931–5.CrossRefPubMed Hernandez DJ, Nielsen ME, Han M, Partin AW. Contemporary evaluation of the Dʼamico risk classification of prostate cancer. Urology. 2007;70:931–5.CrossRefPubMed
4.
Zurück zum Zitat D'Amico AV, Whittington R, Malkowicz SB, Schultz D, Blank K, Broderick GA, Tomaszewski JE, Renshaw AA, Kaplan I, Beard CJ, Wein A. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA. 1998;280:969–74.CrossRefPubMed D'Amico AV, Whittington R, Malkowicz SB, Schultz D, Blank K, Broderick GA, Tomaszewski JE, Renshaw AA, Kaplan I, Beard CJ, Wein A. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA. 1998;280:969–74.CrossRefPubMed
5.
Zurück zum Zitat Rodrigues G, Warde P, Pickles T, Crook J, Brundage M, Souhami L, Lukka H, Genitourinary Radiation Oncologists of C. Pre-treatment risk stratification of prostate cancer patients: a critical review. Can Urol Assoc J. 2012;6:121–7.CrossRefPubMedPubMedCentral Rodrigues G, Warde P, Pickles T, Crook J, Brundage M, Souhami L, Lukka H, Genitourinary Radiation Oncologists of C. Pre-treatment risk stratification of prostate cancer patients: a critical review. Can Urol Assoc J. 2012;6:121–7.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Cooperberg MR, Broering JM, Carroll PR. Risk assessment for prostate cancer metastasis and mortality at the time of diagnosis. J Natl Cancer Inst. 2009;101:878–87.CrossRefPubMedPubMedCentral Cooperberg MR, Broering JM, Carroll PR. Risk assessment for prostate cancer metastasis and mortality at the time of diagnosis. J Natl Cancer Inst. 2009;101:878–87.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Cooperberg MR, Pasta DJ, Elkin EP, Litwin MS, Latini DM, Du Chane J, Carroll PR. The University of California, San Francisco Cancer of the Prostate Risk Assessment score: a straightforward and reliable preoperative predictor of disease recurrence after radical prostatectomy. J Urol. 2005;173:1938–42.CrossRefPubMedPubMedCentral Cooperberg MR, Pasta DJ, Elkin EP, Litwin MS, Latini DM, Du Chane J, Carroll PR. The University of California, San Francisco Cancer of the Prostate Risk Assessment score: a straightforward and reliable preoperative predictor of disease recurrence after radical prostatectomy. J Urol. 2005;173:1938–42.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T, Mason M, Matveev V, Wiegel T, Zattoni F, et al. EAU guidelines on prostate cancer. part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol. 2014;65:124–37.CrossRefPubMed Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T, Mason M, Matveev V, Wiegel T, Zattoni F, et al. EAU guidelines on prostate cancer. part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol. 2014;65:124–37.CrossRefPubMed
9.
Zurück zum Zitat Hall WH, Jani AB, Ryu JK, Narayan S, Vijayakumar S. The impact of age and comorbidity on survival outcomes and treatment patterns in prostate cancer. Prostate Cancer Prostatic Dis. 2005;8:22–30.CrossRefPubMed Hall WH, Jani AB, Ryu JK, Narayan S, Vijayakumar S. The impact of age and comorbidity on survival outcomes and treatment patterns in prostate cancer. Prostate Cancer Prostatic Dis. 2005;8:22–30.CrossRefPubMed
11.
Zurück zum Zitat Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, Pollak M, Regensteiner JG, Yee D. Diabetes and cancer: a consensus report. Diabetes Care. 2010;33:1674–85.CrossRefPubMedPubMedCentral Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, Pollak M, Regensteiner JG, Yee D. Diabetes and cancer: a consensus report. Diabetes Care. 2010;33:1674–85.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat WHO. Anatomic therapeutic chemical code (ATC). 2011. WHO. Anatomic therapeutic chemical code (ATC). 2011.
13.
Zurück zum Zitat Murray NP, Aedo S, Reyes E, Orellana N, Fuentealba C, Jacob O. A prediction model for early biochemical failure after radical prostatectomy based on the CAPRA-S score and the presence of secondary circulating prostate cells. BJU Int. 2015;118:556–62. Murray NP, Aedo S, Reyes E, Orellana N, Fuentealba C, Jacob O. A prediction model for early biochemical failure after radical prostatectomy based on the CAPRA-S score and the presence of secondary circulating prostate cells. BJU Int. 2015;118:556–62.
14.
Zurück zum Zitat Cooperberg MR, Hilton JF, Carroll PR. The CAPRA-S score: a straightforward tool for improved prediction of outcomes after radical prostatectomy. Cancer. 2011;117:5039–46.CrossRefPubMedPubMedCentral Cooperberg MR, Hilton JF, Carroll PR. The CAPRA-S score: a straightforward tool for improved prediction of outcomes after radical prostatectomy. Cancer. 2011;117:5039–46.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Loeb S, Carvalhal GF, Kan D, Desai A, Catalona WJ. External validation of the cancer of the prostate risk assessment (CAPRA) score in a single-surgeon radical prostatectomy series. Urol Oncol. 2012;30:584–9.CrossRefPubMed Loeb S, Carvalhal GF, Kan D, Desai A, Catalona WJ. External validation of the cancer of the prostate risk assessment (CAPRA) score in a single-surgeon radical prostatectomy series. Urol Oncol. 2012;30:584–9.CrossRefPubMed
16.
Zurück zum Zitat May M, Knoll N, Siegsmund M, Fahlenkamp D, Vogler H, Hoschke B, Gralla O. Validity of the CAPRA score to predict biochemical recurrence-free survival after radical prostatectomy. Results from a european multicenter survey of 1,296 patients. J Urol. 2007;178:1957–62. discussion 1962.CrossRefPubMed May M, Knoll N, Siegsmund M, Fahlenkamp D, Vogler H, Hoschke B, Gralla O. Validity of the CAPRA score to predict biochemical recurrence-free survival after radical prostatectomy. Results from a european multicenter survey of 1,296 patients. J Urol. 2007;178:1957–62. discussion 1962.CrossRefPubMed
17.
Zurück zum Zitat Wojciechowska J, Krajewski W, Bolanowski M, Krecicki T, Zatonski T. Diabetes and cancer: a review of current knowledge. Exp Clin Endocrinol Diabetes. 2016;124:263–75.CrossRefPubMed Wojciechowska J, Krajewski W, Bolanowski M, Krecicki T, Zatonski T. Diabetes and cancer: a review of current knowledge. Exp Clin Endocrinol Diabetes. 2016;124:263–75.CrossRefPubMed
18.
Zurück zum Zitat Lipscombe LL, Fischer HD, Austin PC, Fu L, Jaakkimainen RL, Ginsburg O, Rochon PA, Narod S, Paszat L. The association between diabetes and breast cancer stage at diagnosis: a population-based study. Breast Cancer Res Treat. 2015;150:613–20.CrossRefPubMed Lipscombe LL, Fischer HD, Austin PC, Fu L, Jaakkimainen RL, Ginsburg O, Rochon PA, Narod S, Paszat L. The association between diabetes and breast cancer stage at diagnosis: a population-based study. Breast Cancer Res Treat. 2015;150:613–20.CrossRefPubMed
19.
Zurück zum Zitat Briganti A, Karakiewicz PI, Chun FK, Suardi N, Gallina A, Abdollah F, Freschi M, Doglioni C, Rigatti P, Montorsi F. Obesity does not increase the risk of lymph node metastases in patients with clinically localized prostate cancer undergoing radical prostatectomy and extended pelvic lymph node dissection. Int J Urol. 2009;16:676–81.CrossRefPubMed Briganti A, Karakiewicz PI, Chun FK, Suardi N, Gallina A, Abdollah F, Freschi M, Doglioni C, Rigatti P, Montorsi F. Obesity does not increase the risk of lymph node metastases in patients with clinically localized prostate cancer undergoing radical prostatectomy and extended pelvic lymph node dissection. Int J Urol. 2009;16:676–81.CrossRefPubMed
20.
Zurück zum Zitat Margel D, Urbach D, Lipscombe LL, Bell CM, Kulkarni G, Austin PC, Fleshner N. Association between metformin use and risk of prostate cancer and its grade. J Natl Cancer Inst. 2013;105:1123–31.CrossRefPubMed Margel D, Urbach D, Lipscombe LL, Bell CM, Kulkarni G, Austin PC, Fleshner N. Association between metformin use and risk of prostate cancer and its grade. J Natl Cancer Inst. 2013;105:1123–31.CrossRefPubMed
21.
Zurück zum Zitat Preston MA, Riis AH, Ehrenstein V, Breau RH, Batista JL, Olumi AF, Mucci LA, Adami HO, Sorensen HT. Metformin use and prostate cancer risk. Eur Urol. 2014;66:1012–20.CrossRefPubMed Preston MA, Riis AH, Ehrenstein V, Breau RH, Batista JL, Olumi AF, Mucci LA, Adami HO, Sorensen HT. Metformin use and prostate cancer risk. Eur Urol. 2014;66:1012–20.CrossRefPubMed
22.
Zurück zum Zitat Bansal D, Bhansali A, Kapil G, Undela K, Tiwari P. Type 2 diabetes and risk of prostate cancer: a meta-analysis of observational studies. Prostate Cancer Prostatic Dis. 2013;16:151–8. S151.PubMed Bansal D, Bhansali A, Kapil G, Undela K, Tiwari P. Type 2 diabetes and risk of prostate cancer: a meta-analysis of observational studies. Prostate Cancer Prostatic Dis. 2013;16:151–8. S151.PubMed
23.
Zurück zum Zitat Li Q, Kuriyama S, Kakizaki M, Yan H, Sone T, Nagai M, Sugawara Y, Ohmori-Matsuda K, Hozawa A, Nishino Y, Tsuji I. History of diabetes mellitus and the risk of prostate cancer: the Ohsaki Cohort Study. Cancer Causes Control. 2010;21:1025–32.CrossRefPubMed Li Q, Kuriyama S, Kakizaki M, Yan H, Sone T, Nagai M, Sugawara Y, Ohmori-Matsuda K, Hozawa A, Nishino Y, Tsuji I. History of diabetes mellitus and the risk of prostate cancer: the Ohsaki Cohort Study. Cancer Causes Control. 2010;21:1025–32.CrossRefPubMed
24.
Zurück zum Zitat Scallan JP, Hill MA, Davis MJ. Lymphatic vascular integrity is disrupted in type 2 diabetes due to impaired nitric oxide signalling. Cardiovasc Res. 2015;107:89–97.CrossRefPubMedPubMedCentral Scallan JP, Hill MA, Davis MJ. Lymphatic vascular integrity is disrupted in type 2 diabetes due to impaired nitric oxide signalling. Cardiovasc Res. 2015;107:89–97.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Braadland PR, Ramberg H, Grytli HH, Tasken KA. β-adrenergic receptor signaling in prostate cancer. Front Oncol. 2014;4:375.PubMed Braadland PR, Ramberg H, Grytli HH, Tasken KA. β-adrenergic receptor signaling in prostate cancer. Front Oncol. 2014;4:375.PubMed
26.
Zurück zum Zitat Goepel M, Wittmann A, Rubben H, Michel MC. Comparison of adrenoceptor subtype expression in porcine and human bladder and prostate. Urol Res. 1997;25:199–206.CrossRefPubMed Goepel M, Wittmann A, Rubben H, Michel MC. Comparison of adrenoceptor subtype expression in porcine and human bladder and prostate. Urol Res. 1997;25:199–206.CrossRefPubMed
27.
Zurück zum Zitat Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, Frenette PS. Autonomic nerve development contributes to prostate cancer progression. Science. 2013;341:1236361.CrossRefPubMed Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, Frenette PS. Autonomic nerve development contributes to prostate cancer progression. Science. 2013;341:1236361.CrossRefPubMed
28.
Zurück zum Zitat Andersen S, Richardsen E, Nordby Y, Ness N, Storkersen O, Al-Shibli K, Donnem T, Bertilsson H, Busund LT, Angelsen A, Bremnes RM. Disease-specific outcomes of radical prostatectomies in Northern Norway; a case for the impact of perineural infiltration and postoperative PSA-doubling time. BMC Urol. 2014;14:49.CrossRefPubMedPubMedCentral Andersen S, Richardsen E, Nordby Y, Ness N, Storkersen O, Al-Shibli K, Donnem T, Bertilsson H, Busund LT, Angelsen A, Bremnes RM. Disease-specific outcomes of radical prostatectomies in Northern Norway; a case for the impact of perineural infiltration and postoperative PSA-doubling time. BMC Urol. 2014;14:49.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Lu H, Liu X, Guo F, Tan S, Wang G, Liu H, Wang J, He X, Mo Y, Shi B. Impact of beta-blockers on prostate cancer mortality: a meta-analysis of 16,825 patients. Onco Targets Ther. 2015;8:985–90.CrossRefPubMedPubMedCentral Lu H, Liu X, Guo F, Tan S, Wang G, Liu H, Wang J, He X, Mo Y, Shi B. Impact of beta-blockers on prostate cancer mortality: a meta-analysis of 16,825 patients. Onco Targets Ther. 2015;8:985–90.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Morelli MB, Amantini C, Nabissi M, Liberati S, Cardinali C, Farfariello V, Tomassoni D, Quaglia W, Piergentili A, Bonifazi A, et al. Cross-talk between alpha1D-adrenoceptors and transient receptor potential vanilloid type 1 triggers prostate cancer cell proliferation. BMC Cancer. 2014;14:921.CrossRefPubMedPubMedCentral Morelli MB, Amantini C, Nabissi M, Liberati S, Cardinali C, Farfariello V, Tomassoni D, Quaglia W, Piergentili A, Bonifazi A, et al. Cross-talk between alpha1D-adrenoceptors and transient receptor potential vanilloid type 1 triggers prostate cancer cell proliferation. BMC Cancer. 2014;14:921.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Hui H, Fernando MA, Heaney AP. The alpha1-adrenergic receptor antagonist doxazosin inhibits EGFR and NF-kappaB signalling to induce breast cancer cell apoptosis. Eur J Cancer. 2008;44:160–6.CrossRefPubMed Hui H, Fernando MA, Heaney AP. The alpha1-adrenergic receptor antagonist doxazosin inhibits EGFR and NF-kappaB signalling to induce breast cancer cell apoptosis. Eur J Cancer. 2008;44:160–6.CrossRefPubMed
32.
Zurück zum Zitat Partin JV, Anglin IE, Kyprianou N. Quinazoline-based alpha 1-adrenoceptor antagonists induce prostate cancer cell apoptosis via TGF-beta signalling and I kappa B alpha induction. Br J Cancer. 2003;88:1615–21.CrossRefPubMedPubMedCentral Partin JV, Anglin IE, Kyprianou N. Quinazoline-based alpha 1-adrenoceptor antagonists induce prostate cancer cell apoptosis via TGF-beta signalling and I kappa B alpha induction. Br J Cancer. 2003;88:1615–21.CrossRefPubMedPubMedCentral
Metadaten
Titel
Diabetes and beta-adrenergic blockage are risk factors for metastatic prostate cancer
verfasst von
Malte Krönig
Christian Haverkamp
Antonia Schulte
Laura Heinicke
Kathrin Schaal
Vanessa Drendel
Martin Werner
Ulrich Wetterauer
Wolfgang Schultze-Seemann
Cordula Annette Jilg
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
World Journal of Surgical Oncology / Ausgabe 1/2017
Elektronische ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-017-1117-4

Weitere Artikel der Ausgabe 1/2017

World Journal of Surgical Oncology 1/2017 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.