Skip to main content
Erschienen in: Journal of Ovarian Research 1/2019

Open Access 01.12.2019 | Research

Diagnostic extended usefulness of RMI: comparison of four risk of malignancy index in preoperative differentiation of borderline ovarian tumors and benign ovarian tumors

verfasst von: Shuang Zhang, Shan Yu, Wenying Hou, Xiaoying Li, Chunping Ning, Yingnan Wu, Feng Zhang, Yu Fei Jiao, Leo Tsz On Lee, Litao Sun

Erschienen in: Journal of Ovarian Research | Ausgabe 1/2019

Abstract

Background

This study aimed to examine the performance of the four risk of malignancy index (RMI) in discriminating borderline ovarian tumors (BOTs) and benign ovarian masses in daily clinical practice.

Methods

A total of 162 women with BOTs and 379 women with benign ovarian tumors diagnosed at the Second Affiliated Hospital of Harbin Medical University from January 2012 to December 2016 were enrolled in this retrospective study. Also, we classified these patients into serous borderline ovarian tumor (SBOT) and mucinous borderline ovarian tumor (MBOT) subgroup. Preoperative ultrasound findings, cancer antigen 125 (CA125) and menopausal status were reviewed. The area under the curve (AUC) of receiver operator characteristic curves (ROC) and performance indices of RMI I, RMI II, RMI III and RMI IV were calculated and compared for discrimination between benign ovarian tumors and BOTs.

Results

RMI I had the highest AUC (0.825, 95% CI: 0.790–0.856) among the four RMIs in BOTs group. Similar results were found in SBOT (0.839, 95% CI: 0.804–0.871) and MBOT (0.791, 95% CI: 0.749–0.829) subgroups. RMI I had the highest specificity among the BOTs group (87.6, 95% CI: 83.9–90.7%), SBOT (87.6, 95% CI: 83.9–90.7%) and MBOT group (87.6, 95% CI: 83.9–90.7%). RMI II scored the highest overall in terms of sensitivity among the BOTs group (69.75, 95% CI: 62.1–76.7%), SBOT (74.34, 95% CI: 65.3–82.1%) and MBOT (59.18, 95% CI: 44.2–73.0%) group.

Conclusion

Compared to other RMIs, RMI I was the best-performed method for differentiation of BOTs from benign ovarian tumors. At the same time, RMI I also performed best in the discrimination SBOT from benign ovarian tumors.
Hinweise
Shuang Zhang and Shan Yu contributed equally to this work.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13048-019-0568-3.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AUC
Area under the receiver operator characteristic curves
BOTs
Borderline ovarian tumors
MBOTs
Mucinous borderline ovarian tumors
RMI
Risk of malignancy index
SBOTs
Serous borderline ovarian tumors

Background

The concept and treatment of borderline ovarian tumors are in controversial for more than a century. Borderline ovarian tumors (BOTs) could form a separate entity that different with benign and malignant ovarian neoplasms. These tumors are histopathologically different by abnormal epithelium and may become cancer. Hence it is also called “ovarian low malignant potential tumor”, as those tumors are believed to have characteristics related to invasive ovarian cancer [1]. It was first described by Taylor in 1929 and officially classified by the International Federation of Gynecology and Obstetrics (FIGO) in 1971 and World Health Organization (WHO) in 1973 [24]. These tumors account for approximately 10–20% of all ovarian epithelial tumors, especially in women of reproductive age [1, 5]. So far, six subtypes of BOTs are identified as: serous (50–55%), mucinous (30–45%), endometrioid, clear cell, seromucinous and borderline Brenner tumor of the ovary [6].
Current findings suggested that the serous borderline ovarian tumors (SBOTs) have more potential to develop into low-grade serous carcinoma, while other borderline ovarian tumors present relative “inert” behavior [7]. Based on this conception, grouping BOTs into different histological subtype and distinction from benign ovarian tumors is of great translational research interests. The distinction of borderline from benign is important since the recommended surgery method is completely different, besides conservative fertility treatment [8]. As lacking effective indicators for preoperative diagnosis and with economic considerations, clinicians would not decide to send samples for an intraoperative frozen section examination if the tumor looks like “Benign” before the operation, which could make the clinical situation into a dilemma for a secondary surgery.
As BOTs have less distinct ultrasound characteristics, other preoperative examinations such as magnetic resonance imaging (MRI), computed tomography (CT), serum levels of CA125, CA199, and even biopsy are often not easy for a definitive diagnosis respectively [915]. However, precise preoperative evaluation of ovarian masses is important to decrease unnecessary anxiety and enable decisions for optimal treatment, especially for patients who wish to preserve their reproductive capacity and do not wish to take a secondary surgery. Thus, specific and sensitive methods for preoperation diagnosing ovarian borderline tumors are needed.
So far, there are only a couple of reports about evaluating the effectiveness of methods in the distinction between BOTs and benign ovarian tumors [1618]. The risk of malignancy index (RMI) is probably the most commonly accepted and easy model [19]. RMI is an algorithm based on scores derived from ultrasound variables, menopausal status, and serum CA125 level. Till now, four versions, RMI I, II, III, and IV have been established and generally accepted by clinicians to distinguish malignant ovarian tumors from benign ones.
Our study was purposed to evaluate the availability and performance characteristics of the four RMIs to discriminate BOTs from benign ovarian tumors. Also, we are trying to provide an effective preoperational evaluation module between benign and borderline ovarian tumors in histological subgroups in order to facilitate clinicians choosing a best therapeutic strategy for patients.

Materials and methods

Patient clinical data

The clinical data of 912 women who underwent surgery for an ovarian mass in the Obstetrics and Gynecology Department, Second Affiliated Hospital of Harbin Medical University from January 2012 to December 2016 were obtained into our retrospective analysis. All subjects agreed with the ethics examination and signed informed consent. Only serous and mucinous borderline ovarian tumors (MBOTs) and benign ovarian tumors with complete laboratory data and definitive pathology report were included in this study. Moreover, the ultrasound parameters must be able to be extracted from patients in hospital records. All others were excluded. This study only accepts the final surgical pathology reports approved by two individual pathologists with consensus.

Ultrasound examination

The ultrasound was performed transvaginally by Voluson E8 (GE Healthcare, Wauwatosa, WI, USA) with a 5- to 9-MHz transvaginal transducer. Patients lay in the lithotomy position after emptying the bladder. On condition that a mass was found to be too large to be observed completely transvaginally, a transabdominal repeat examination with a full bladder in the supine position was obtained using Voluson E8 with a 4- to 8-MHz transabdominal probe. The ultrasound characters and single greatest diameter of the tumor were recorded. If the ovarian masses were more than one, only the one with most complex morphologic characteristics was considered for statistical analysis. Visceral organs and peritoneal surfaces, including the omentum majus and lymph nodes surrounding the abdominal aorta and iliac arteries, were examined.

RMI

Taken all data together, RMI I, RMI II, RMI III, and RMI IV were calculated for all qualified patients (Score algorithms in Table 1). Briefly, each of the ultrasound characters (multilocular cystic lesion, solid areas, bilateral lesions, ascites, intra-abdominal metastases findings in Fig. 1) is counting as one point. The final ultrasound score (U) was summed for each patient. Tumor size (S) was also recorded by ultrasound. The postmenopausal status was determined as age over 50 and amenorrhea for over 1 year, while all others were considered premenopausal. Serum CA125 value was extracted from laboratory test with the protocol provided by manufactory (ARCHITECT CA125 II Reagent Kit 2 K45, ARCHITECT i4000 immunoassay analyzer, Abbott, U.S.A.) and applied to each algorithm.
Table 1
Schematic presentation of four different RMI score algorithms
Variants
Ultrasound Score (U)a
Menopausal Score (M)
Tumor Size (S), cmb
RMI I = U × M × CA-125
U = 0 (0 parameter)
M = 1 (premenopausal)
Not applicable
U = 1 (1 parameter)
M = 3 (postmenopausal)
 
U = 3 (≥2 parameters)
  
RMI II = U × M × CA-125
U = 1 (0 or 1 parameter)
M = 1 (pre-menopausal)
Not applicable
U = 4 (≥2 parameters)
M = 4 (postmenopausal)
 
RMI III = U × M × CA-125
U = 1 (0 or 1 parameter)
M = 1 (premenopausal)
Not applicable
U = 3 (≥2 parameters)
M = 3 (postmenopausal)
 
RMI IV = U × M × S × CA-125
U = 1 (0 or 1 parameter)
M = 1 (premenopausal)
S = 1 (< 7)
U = 4 (≥2 parameters)
M = 4 (postmenopausal)
S = 2 (≥7)
aParameters: presence of a multilocular cystic lesion, solid areas, a bilateral lesion, ascites, and intra-abdominal metastasis
bSingle greatest diameter

Statistical analysis

All statistical analyses were performed by the SPSS ver. 20 (SPSS Inc., Chicago, IL, USA) and MedCalc ver. 15.8 (MedCalc Software, Mariakerke, Belgium). The Chi-square test was used to test differences in menopausal status, ultrasound score and tumor size. The Mann­Whitney U­test was applied when testing differences in the distribution of CA­125. Age was compared with the use of the Student’s t-test according to their distribution. ROC curves were constructed and the Area under the receiver operator characteristic curves (AUC) with binomial exact 95% confidence intervals were calculated between benign ovarian tumors and BOTs [20]. The diagnostic performance of the models was also expressed as sensitivity, specificity and positive and negative likelihood ratios. The method as previously described was used to calculate the difference between two AUCs [21]. Exact McNemar test was used to compare the sensitivity of the RMI I, RMI II, RMI III and RMI IV. Finally, synthetical evaluation of the diagnostic performance was measured by AUC, sensitivity, and specificity. The p-value < 0.05 was considered to indicate the statistically significant difference.

Results

Patient and tumor characteristics

In total, 541 cases (59.32%, 541/912) were qualified our criterion and included in our study. The histopathological classification of all cases (162 women with BOTs and 379 women with benign ovarian masses) is listed in Table 2. The majority of benign ovarian masses were mucinous cystadenoma (n = 96) and serous cystadenoma (n = 88). Histopathological results confirmed 113 SBOTs and 49 MBOTs. There was no significant difference in age and menopausal status among the BOTs group, SBOT and MBOT subgroup and benign group (p > 0.05). The difference was found statistically significant in the value of CA125 serum level and ultrasound score between the BOTs group, SBOT and MBOT subgroup and benign group (p < 0.05). For the tumor size, the p was < 0.05 between BOTs, MBOT group, and benign group. There was no significant difference in tumor size between SBOT and benign group (p = 0.505). Those clinical data above was summarized and illustrated in Table 3.
Table 2
Distribution of histopathologic diagnoses
Histological diagnosis
n
%
Benign (n = 379)
 Mucinous cystadenomas
96
25
 Serous cystadenomas
88
23
 Endometriotic cysts
79
20
 Teratoma
60
16
 Simple cysts
25
7
 Theca fibroma
25
7
 Brenner tumor
6
2
BOTs (n = 162)
 Borderline Serous cystadenoma
113
70
 Borderline Mucinous cystadenoma
49
30
Table 3
The distribution of benign ovarian tumors and BOTs including subgroup of BOTs by age, menopausal status, ultrasound score, serum CA125, and tumor size
Variables
Benign (n = 379)
BOTs (n = 162)
P value
SBOT
P value
MBOT
P value
Age (years)
Mean ± SD
37.73 ± 14.61
40.3 ± 15.12
0.065b
39.88 ± 14.32
0.168b
41.24 ± 16.92
0.12b
Menopausal status
  
0.88c
 
0.77c
 
0.438c
 Premenopausal
297
126
 
90
 
36
 
 Postmenopausal
82
36
 
23
 
13
 
Ultrasound scorea n, (%)
  
N/Ac
 
N/Ac
 
N/Ac
 0
159(42)
12 (7.4)
 
9
 
3
 
 1
187(49.3)
81 (50)
 
53
 
28
 
 2–5
33 (8.7)
69(42.6)
 
51
 
18
 
CA 125 (U/mL)
Mean ± SD
34.77 ± 6.16
192.15 ± 98.13
N/Ad
235.63 ± 322.28
N/Ad
91.8 ± 202.61
N/Ad
Tumor size (cm)
  
N/Ac
 
0.505c
 
N/Ac
 <7
198
58
 
55
 
3
 
 ≥7
181
104
 
58
 
46
 
aUltrasound scores were recorded as one point for each of the following characteristics: multilocularity, solid areas, bilaterality, ascites and intra-abdominal metastases
bStudent’s t-test
cChi square test
dMann–Whitney U test

RMI calculation

According to RMI score algorithms (Table 1), we calculated RMI I to RMI IV for each patient by their relevant clinical data respectively. Those data were shown in Additional file 1: Table S1.

ROC curves

The ROC curves of four RMIs were shown in Fig. 2. For BOTs group, RMI I was associated with the highest AUC (0.825, 95% CI: 0.790–0.856) among all the four RMIs. Similar results were found in SBOT (0.839, 95% CI: 0.804–0.871) and MBOT (0.791, 95% CI: 0.749–0.829) subgroup. Pairwise comparison of ROC curves indicated that the AUC of RMI I was significantly larger than the AUCs of RMI II, RMI III and RMI IV (p = 0.0209, p < 0.0001 and p = 0.0496) in BOTs group and in MBOT subgroup (p < 0.0001, p < 0.0001 and p = 0.0336) (Table 4). For SBOT subgroup, the AUC between RMI I and RMI III showed significantly difference (p < 0.0001).
Table 4
Differences in the AUC of the ROC curves for the diagnosis of BOTs with the corresponding 95% confidence intervals (95% CI) and p-values. Pairwise ROC curve comparisons were calculated for the BOTs, SBOT and MBOT group. The method described by DeLong et al. was used to calculate the difference between two AUCs [21]
BOTs
SBOT
MBOT
Difference
95% CI
P
Difference
95% CI
P
Difference
95% CI
P
I Vs II
 0.0403
0.00609–0.0745
0.0209
0.0152
−0.0272-0.0577
0.4818
0.0981
0.0572–0.139
<0.0001
I Vs III
 0.0911
0.0686–0.114
<0.0001
0.0797
0.0569–0.102
<0.0001
0.117
0.0788–0.156
<0.0001
I Vs IV
 0.033
−0.00103-0.0671
0.0496
0.0307
−0.0132-0.0746
0.1708
0.0384
0.00299–0.0739
0.0336

Performance indices

The calculated sensitivities and specificities at the cutoff values of 60 for RMI I, II, III and 100 for RMI IV was shown in Table 5. RMI I had the highest specificity among the BOTs group (87.6, 95% CI: 83.9–90.7%), SBOT (87.6, 95% CI: 83.9–90.7%) and MBOT subgroup (87.6, 95% CI: 83.9–90.7%). RMI II scored the highest overall in terms of sensitivity among the BOTs group (69.75, 95% CI: 62.1–76.7%), SBOT (74.34, 95% CI: 65.3–82.1%) and MBOT (59.18, 95% CI: 44.2–73.0%) subgroup. In Table 6, we compared the sensitivity of RMI I, RMI III, RMI IV with RMI II in BOTs group, SBOT and MBOT subgroup. The RMI II demonstrated superior performance compared with RMI I and RMI III in BOTs (p = 0.002 and p = 0.008) and SBOT subgroup (p = 0.002 and p = 0.008), but not with RMI IV (p = 0.219 and p = 0.219).
Table 5
Cutoff, sensitivity, specificity, positive likelihood ratio (LR+), negative likelihood ratio (LR–) of RMI I, RMI II, RMI III and RMI IV in BOT, SBOT and MBOT group. The 95% confidence intervals (95% CI) are indicated between brackets
 
Index
Cutoff
Sensitivity, %
Specificity, %
LR+
LR-
BOT
RMI I
60
63.58(55.7–71.0)
87.6(83.9–90.7)
5.13(3.8–6.9)
0.42(0.3–0.5)
RMI II
59.7
69.75(62.1–76.7)
76.78(72.2–80.9)
3(2.4–3.7)
0.39(0.3–0.5)
RMI III
60
63.58(55.7–71.0)
80.74(76.4–84.6)
3.3(2.6–4.2)
0.45(0.4–0.6)
RMI IV
92
67.28(59.5–74.4)
78.1(73.6–82.2)
3.07(2.5–3.8)
0.42(0.3–0.5)
SBOT
RMI I
60
67.26(57.8–75.8)
87.6(83.9–90.7)
5.42(4.0–7.3)
0.37(0.3–0.5)
RMI II
59.7
74.34(65.3–82.1)
76.78(72.2–80.9)
3.2(2.6–4.0)
0.33(0.2–0.5)
RMI III
60
67.26(57.8–75.8)
80.74(76.4–84.6)
3.49(2.7–4.5)
0.41(0.3–0.5)
RMI IV
91.8
70.8(61.5–79.0)
78.1(73.6–82.2)
3.23(2.6–4.0)
0.37(0.3–0.5)
MBOT
RMI I
60
55.1(40.2–69.3)
87.6(83.9–90.7)
4.44(3.1–6.4)
0.51(0.4–0.7)
RMI II
61
59.18(44.2–73.0)
77.57(73.0–81.7)
2.64(2.0–3.6)
0.53(0.4–0.7)
RMI III
61
55.1(40.2–69.3)
81(76.7–84.8)
2.9(2.1–4.0)
0.55(0.4–0.8)
RMI IV
92
59.18(44.2–73.0)
78.1(73.6–82.2)
2.7(2.0–3.6)
0.52(0.4–0.7)
Table 6
The sensitivity of RMI I, RMI III, and RMI IV compared with RMI II
 
RMI II
RMI I
RMI III
RMI IV
Sensitivity
Sensitivity
P
Sensitivity
P
Sensitivity
P
BOT
69.75(62.1–76.7)
63.58(55.7–71.0)
0.002
63.58(55.7–71.0)
0.002
67.28(59.5–74.4)
0.219
SBOT
74.34(65.3–82.1)
67.26(57.8–75.8)
0.008
67.26(57.8–75.8)
0.008
70.8(61.5–79.0)
0.219
MBOT
59.18(44.2–73.0)
55.1(40.2–69.3)
0.5
55.1(40.2–69.3)
0.5
59.18(44.2–73.0)
1

Discussion

In the 1990s, Jacobs et al. originally developed the RMI, which is known as RMI I [22]. Modifying RMI, Tingulstad et al. developed RMI II and III, with the alternation of the ratio of ultrasound score and postmenopausal status score [23, 24]. Recently RMI IV was created by Yamamoto et al. by adding the parameter of the tumor size [25]. Over the past few years, the performance of RMI to distinguish benign from malignant adnexal masses has been well studied. However, how to discriminate borderline ovarian tumors from benign ovarian tumors has been in great difficulty over years, as BOTs present less typical tumor features [26, 27]. In fact, the preoperative discrimination is quite important for BOTs, as the recommended surgery methods are different (Fig. 3). Our study has revealed the effectiveness of using RMIs to predict tumor nature, which could help both surgeon and pathologist making pre and in operation decision for proper treatment to benefit patients, especially who wish to preserve their reproductive capacity before the operation.
In previous studies, BOTs are not evaluated as a separate group and usually included in malignant groups, but their clinical features are more easily to be confused with benign ones. Although the clinical outcome is good, there are still many advanced cases. For the reason above, we applied these RMIs only between BOTs and benign lesions to assess RMIs performance in the differential diagnosis. Our results show that RMI I conducted the best performance in BOTs group, SBOT, and MBOT subgroups. The AUCs of the RMI I were 0.825, 0.839 and 0.791 respectively. It suggests that RMI I was the best method to differentiate BOTs from benign ovarian tumors. Moreover, we found that the AUCs of four RMIs in BOTs and SBOT group were both more than 0.7, it implies that RMIs are possible to identify SBOT before the operation. However, in MBOT group, the AUCs of four RMIs were smaller, especially for the RMI II and RMI III, which were both less than 0.7. Gotlieb et al. showed elevated CA125 concentrations in 75% of SBOT and only 30% of MBOT [10]. This may partly account for the poor performance of RMIs in discriminating MBOTs and benign ovarian masses. Regards of the sensitivity, we found RMI II was the highest for BOTs group, SBOT, and MBOT subgroups. However, there is a risk of use RMI II, as it provides more weighting to the ultrasound findings when compared to RMI I, RMI III and RMI IV. This also explains the improved sensitivity in RMI II. In MBOT subgroup, the sensitivity of RMI II and RMI IV were similar and better than other groups. The most significant factor is that RMI IV included a new parameter about the tumor size. From the previous study, we know that MBOTs demonstrate a significantly larger tumor size than SBOTs [28]. Taken all together, the specificity of RMI I was the highest in all the three groups. The cutoff of the previous studies which investigated the difference between benign and malignant ovarian tumors is 200 for RIM I, RMI II and RMI III [2224]. The suggestive cutoff for RMI IV is 450 [25]. However, in our study, all the values of the cutoff for the four RMIs are relatively lower. The main reason is that the ultrasound score, CA125, the percent of postmenopausal status and tumor size of BOTs are lower than those of malignant ovarian tumor. The cutoff of RMI I, II and III is about 60, and 100 for RMI IV. As RMI I may take the best performance of distinguishing BOTs from benign tumors, considering its application in malignancy, we may use < 60, 60–200, > 200 as warning lines for clinicians.
Since elevated levels of CA19–9 have been reported in BOT, especially in mucinous histological types [10, 27], measurement of CA19–9 has been proposed to be of some clinical value in combination with CA125 as a marker for serological monitoring of BOT [29]. Accordingly, in some institutions, CA19–9 has been incorporated as a tumor marker for evaluation of patients with adnexal masses. However, none of the national guidelines, including those of the American College of Obstetricians and Gynecologists (ACOG), the Society of Gynecologic Oncologists (SGO) and National Institute for Health and Clinical Excellence (NICE), have included CA19–9 measurement as an adjunct in the triage of patients with adnexal masses [30, 31]. Alanbay I et al. have conducted a meaningful study. They modified the RMI IV formulation, replacing CA125 with CA19–9. Then they compared RMI IV (CA125), RMI IV (CA19–9), serum CA125 and CA19–9 level, ultrasound score, and menopausal status between BOTs and benign adnexal masses. They found the sensitivity of CA 19–9 (40%) lower than CA 125(54%). RMI IV (CA125) was found to be the best predictive method for differentiation of BOTs from benign adnexal masses. Replacing CA125 with CA19–9 didn’t affect RMI IV sensitivity and specificity for discrimination between BOTs and benign adnexal masses [17]. It indicates that CA125 is more important in discrimination between BOTs and benign adnexal masses, or it is appropriate for RMI than CA19–9. Moreover, the level of CA19–9 was shown to be high in several benign ovarian findings, especially mature cystic teratomas [32], and even in nongynecological conditions such as rheumatoid arthritis [33]. Several studies found increased CA19–9 levels in 37.4–39.6% of mature cystic teratomas cases [34, 35]. It may affect the accuracy of discrimination between BOT and benign ovarian tumors. From what has been discussed above, we selected CA125 instead of CA19–9 as a one of the parameters of RMI.
The evaluation of strategies for the BOTs has not been considered by histologic subtype in previous studies, or even with results that it is impossible to distinguish benign tumor from BOTs. Our study has its own limitations that we only classify BOTs into SBOT and MBOT subgroups and more in-depth clinical studies with the large patient number should be added for validation. Also, the ultrasound findings are greatly influenced by the sonographer. However, we hope that our study would be able to solve certain preoperation question raised in borderline ovarian tumors, especially as a potent reminder for the clinicians. .

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13048-019-0568-3.

Acknowledgments

Not applicable.
The study was approved by the Ethics Committee of Second Affiliated Hospital of Harbin Medical University. Patients who participated in this research had complete clinical data. Signed informed consents were obtained from the patients or the guardians.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Harris R, Whittemore AS, Itnyre J. Characteristics relating to ovarian cancer risk: collaborative analysis of 12 US case-control studies. III. Epithelial tumors of low malignant potential in white women. Collaborative ovarian Cancer group. Am J Epidemiol. 1992;136(10):1204–11.CrossRef Harris R, Whittemore AS, Itnyre J. Characteristics relating to ovarian cancer risk: collaborative analysis of 12 US case-control studies. III. Epithelial tumors of low malignant potential in white women. Collaborative ovarian Cancer group. Am J Epidemiol. 1992;136(10):1204–11.CrossRef
2.
Zurück zum Zitat Taylor H. Malignant and semi-malignant tumors of the ovary. Surg Gynecol Obstet. 1929;48:204–30. Taylor H. Malignant and semi-malignant tumors of the ovary. Surg Gynecol Obstet. 1929;48:204–30.
3.
Zurück zum Zitat Classification and staging of malignant tumours in the female pelvis. Acta Obstet Gynecol Scand. 1971;50:1):1–7. Classification and staging of malignant tumours in the female pelvis. Acta Obstet Gynecol Scand. 1971;50:1):1–7.
4.
Zurück zum Zitat Serov SF, Scully RE, Sobin LH. Histological typing of ovarian tumors. WHO international histological classification of tumors no.9. World Health Organization: Geneva, Switzerland, 1973;90(9):756–759. Serov SF, Scully RE, Sobin LH. Histological typing of ovarian tumors. WHO international histological classification of tumors no.9. World Health Organization: Geneva, Switzerland, 1973;90(9):756–759.
5.
Zurück zum Zitat Lenhard MS, Mitterer S, Kumper C, Stieber P, Mayr D, Ditsch N, et al. Long-term follow-up after ovarian borderline tumor: relapse and survival in a large patient cohort. Eur J Obstet Gynecol Reprod Biol. 2009;145(2):189–94.CrossRef Lenhard MS, Mitterer S, Kumper C, Stieber P, Mayr D, Ditsch N, et al. Long-term follow-up after ovarian borderline tumor: relapse and survival in a large patient cohort. Eur J Obstet Gynecol Reprod Biol. 2009;145(2):189–94.CrossRef
6.
Zurück zum Zitat Seidman JD, Soslow RA, Vang R, Berman JJ, Stoler MH, Sherman ME, et al. Borderline ovarian tumors: diverse contemporary viewpoints on terminology and diagnostic criteria with illustrative images. Hum Pathol. 2004;35(8):918–33.CrossRef Seidman JD, Soslow RA, Vang R, Berman JJ, Stoler MH, Sherman ME, et al. Borderline ovarian tumors: diverse contemporary viewpoints on terminology and diagnostic criteria with illustrative images. Hum Pathol. 2004;35(8):918–33.CrossRef
7.
Zurück zum Zitat Hauptmann S, Friedrich K, Redline R, Avril S. Ovarian borderline tumors in the 2014 WHO classification: evolving concepts and diagnostic criteria. Virchows Arch. 2017;470(2):125–42.CrossRef Hauptmann S, Friedrich K, Redline R, Avril S. Ovarian borderline tumors in the 2014 WHO classification: evolving concepts and diagnostic criteria. Virchows Arch. 2017;470(2):125–42.CrossRef
8.
Zurück zum Zitat Cadron I, Leunen K, Van Gorp T, Amant F, Neven P, Vergote I. Management of borderline ovarian neoplasms. J Clin Oncol. 2007;25(20):2928–37.CrossRef Cadron I, Leunen K, Van Gorp T, Amant F, Neven P, Vergote I. Management of borderline ovarian neoplasms. J Clin Oncol. 2007;25(20):2928–37.CrossRef
9.
Zurück zum Zitat Emoto M, Udo T, Obama H, Eguchi F, Hachisuga T, Kawarabayashi T. The blood flow characteristics in borderline ovarian tumors based on both color Doppler ultrasound and histopathological analyses. Gynecol Oncol. 1998;70(3):351–7.CrossRef Emoto M, Udo T, Obama H, Eguchi F, Hachisuga T, Kawarabayashi T. The blood flow characteristics in borderline ovarian tumors based on both color Doppler ultrasound and histopathological analyses. Gynecol Oncol. 1998;70(3):351–7.CrossRef
10.
Zurück zum Zitat Gotlieb WH, Soriano D, Achiron R, Zalel Y, Davidson B, Kopolovic J, et al. CA 125 measurement and ultrasonography in borderline tumors of the ovary. Am J Obstet Gynecol. 2000;183(3):541–6.CrossRef Gotlieb WH, Soriano D, Achiron R, Zalel Y, Davidson B, Kopolovic J, et al. CA 125 measurement and ultrasonography in borderline tumors of the ovary. Am J Obstet Gynecol. 2000;183(3):541–6.CrossRef
11.
Zurück zum Zitat Pascual MA, Tresserra F, Grases PJ, Labastida R, Dexeus S. Borderline cystic tumors of the ovary: gray-scale and color Doppler sonographic findings. J Clin Ultrasound. 2002;30(2):76–82.CrossRef Pascual MA, Tresserra F, Grases PJ, Labastida R, Dexeus S. Borderline cystic tumors of the ovary: gray-scale and color Doppler sonographic findings. J Clin Ultrasound. 2002;30(2):76–82.CrossRef
12.
Zurück zum Zitat Exacoustos C, Romanini ME, Rinaldo D, Amoroso C, Szabolcs B, Zupi E, et al. Preoperative sonographic features of borderline ovarian tumors. Ultrasound Obstet Gynecol. 2005;25(1):50–9.CrossRef Exacoustos C, Romanini ME, Rinaldo D, Amoroso C, Szabolcs B, Zupi E, et al. Preoperative sonographic features of borderline ovarian tumors. Ultrasound Obstet Gynecol. 2005;25(1):50–9.CrossRef
13.
Zurück zum Zitat Foti PV, Attina G, Spadola S, Caltabiano R, Farina R, Palmucci S, et al. MR imaging of ovarian masses: classification and differential diagnosis. Insights Imaging. 2016;7(1):21–41.CrossRef Foti PV, Attina G, Spadola S, Caltabiano R, Farina R, Palmucci S, et al. MR imaging of ovarian masses: classification and differential diagnosis. Insights Imaging. 2016;7(1):21–41.CrossRef
14.
Zurück zum Zitat Song T, Lee DH, Jung YW, Yun BS, Seong SJ, Choi CH, et al. Elevated preoperative CA125 or CA19-9 in borderline ovarian tumors: could it be suggestive of advanced stage or a poor prognosis? Gynecol Obstet Investig. 2018;83(1):45–51.CrossRef Song T, Lee DH, Jung YW, Yun BS, Seong SJ, Choi CH, et al. Elevated preoperative CA125 or CA19-9 in borderline ovarian tumors: could it be suggestive of advanced stage or a poor prognosis? Gynecol Obstet Investig. 2018;83(1):45–51.CrossRef
15.
Zurück zum Zitat Abascal-Saiz A, Sotillo-Mallo L, de Santiago J, Zapardiel I. Management of borderline ovarian tumours: a comprehensive review of the literature. Ecancermedicalscience. 2014;8:403.PubMedPubMedCentral Abascal-Saiz A, Sotillo-Mallo L, de Santiago J, Zapardiel I. Management of borderline ovarian tumours: a comprehensive review of the literature. Ecancermedicalscience. 2014;8:403.PubMedPubMedCentral
16.
Zurück zum Zitat Sobiczewski P, Danska-Bidzinska A, Rzepka J, Kupryjanczyk J, Gujski M, Bidzinski M, et al. Evaluation of selected ultrasonographic parameters and marker levels in the preoperative differentiation of borderline ovarian tumors and ovarian cancers. Arch Gynecol Obstet. 2012;286(6):1513–9.CrossRef Sobiczewski P, Danska-Bidzinska A, Rzepka J, Kupryjanczyk J, Gujski M, Bidzinski M, et al. Evaluation of selected ultrasonographic parameters and marker levels in the preoperative differentiation of borderline ovarian tumors and ovarian cancers. Arch Gynecol Obstet. 2012;286(6):1513–9.CrossRef
17.
Zurück zum Zitat Alanbay I, Akturk E, Coksuer H, Ercan M, Karasahin E, Dede M, et al. Comparison of risk of malignancy index (RMI), CA125, CA 19-9, ultrasound score, and menopausal status in borderline ovarian tumor. Gynecol Endocrinol. 2012;28(6):478–82.CrossRef Alanbay I, Akturk E, Coksuer H, Ercan M, Karasahin E, Dede M, et al. Comparison of risk of malignancy index (RMI), CA125, CA 19-9, ultrasound score, and menopausal status in borderline ovarian tumor. Gynecol Endocrinol. 2012;28(6):478–82.CrossRef
18.
Zurück zum Zitat Dora SK, Dandapat AB, Pande B, Hota JP. A prospective study to evaluate the risk malignancy index and its diagnostic implication in patients with suspected ovarian mass. J Ovarian Res. 2017;10(1):55.CrossRef Dora SK, Dandapat AB, Pande B, Hota JP. A prospective study to evaluate the risk malignancy index and its diagnostic implication in patients with suspected ovarian mass. J Ovarian Res. 2017;10(1):55.CrossRef
19.
Zurück zum Zitat Geomini P, Kruitwagen R, Bremer GL, Cnossen J, Mol BW. The accuracy of risk scores in predicting ovarian malignancy: a systematic review. Obstet Gynecol. 2009;113(2 Pt 1):384–94.CrossRef Geomini P, Kruitwagen R, Bremer GL, Cnossen J, Mol BW. The accuracy of risk scores in predicting ovarian malignancy: a systematic review. Obstet Gynecol. 2009;113(2 Pt 1):384–94.CrossRef
20.
Zurück zum Zitat Hilgers RA. Distribution-free confidence bounds for ROC curves. Methods Inf Med. 1991;30(2):96–101.CrossRef Hilgers RA. Distribution-free confidence bounds for ROC curves. Methods Inf Med. 1991;30(2):96–101.CrossRef
21.
Zurück zum Zitat DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.CrossRef DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.CrossRef
22.
Zurück zum Zitat Jacobs I, Oram D, Fairbanks J, Turner J, Frost C, Grudzinskas JG. A risk of malignancy index incorporating CA 125, ultrasound and menopausal status for the accurate preoperative diagnosis of ovarian cancer. Br J Obstet Gynaecol. 1990;97(10):922–9.CrossRef Jacobs I, Oram D, Fairbanks J, Turner J, Frost C, Grudzinskas JG. A risk of malignancy index incorporating CA 125, ultrasound and menopausal status for the accurate preoperative diagnosis of ovarian cancer. Br J Obstet Gynaecol. 1990;97(10):922–9.CrossRef
23.
Zurück zum Zitat Tingulstad S, Hagen B, Skjeldestad FE, Onsrud M, Kiserud T, Halvorsen T, et al. Evaluation of a risk of malignancy index based on serum CA125, ultrasound findings and menopausal status in the pre-operative diagnosis of pelvic masses. Br J Obstet Gynaecol. 1996;103(8):826–31.CrossRef Tingulstad S, Hagen B, Skjeldestad FE, Onsrud M, Kiserud T, Halvorsen T, et al. Evaluation of a risk of malignancy index based on serum CA125, ultrasound findings and menopausal status in the pre-operative diagnosis of pelvic masses. Br J Obstet Gynaecol. 1996;103(8):826–31.CrossRef
24.
Zurück zum Zitat Tingulstad S, Hagen B, Skjeldestad FE, Halvorsen T, Nustad K, Onsrud M. The risk-of-malignancy index to evaluate potential ovarian cancers in local hospitals. Obstet Gynecol. 1999;93(3):448–52.CrossRef Tingulstad S, Hagen B, Skjeldestad FE, Halvorsen T, Nustad K, Onsrud M. The risk-of-malignancy index to evaluate potential ovarian cancers in local hospitals. Obstet Gynecol. 1999;93(3):448–52.CrossRef
25.
Zurück zum Zitat Yamamoto Y, Yamada R, Oguri H, Maeda N, Fukaya T. Comparison of four malignancy risk indices in the preoperative evaluation of patients with pelvic masses. Eur J Obstet Gynecol Reprod Biol. 2009;144(2):163–7.CrossRef Yamamoto Y, Yamada R, Oguri H, Maeda N, Fukaya T. Comparison of four malignancy risk indices in the preoperative evaluation of patients with pelvic masses. Eur J Obstet Gynecol Reprod Biol. 2009;144(2):163–7.CrossRef
26.
Zurück zum Zitat Tinelli R, Malzoni M, Cosentino F, Perone C, Tinelli A, Malvasi A, et al. Feasibility, safety, and efficacy of conservative laparoscopic treatment of borderline ovarian tumors. Fertil Steril. 2009;92(2):736–41.CrossRef Tinelli R, Malzoni M, Cosentino F, Perone C, Tinelli A, Malvasi A, et al. Feasibility, safety, and efficacy of conservative laparoscopic treatment of borderline ovarian tumors. Fertil Steril. 2009;92(2):736–41.CrossRef
27.
Zurück zum Zitat Benito V, Lubrano A, Arencibia O, Medina N, Alvarez Eva E, Andujar M, et al. Serous and mucinous borderline ovarian tumors: are there real differences between these two entities? Eur J Obstet Gynecol Reprod Biol. 2010;153(2):188–92.CrossRef Benito V, Lubrano A, Arencibia O, Medina N, Alvarez Eva E, Andujar M, et al. Serous and mucinous borderline ovarian tumors: are there real differences between these two entities? Eur J Obstet Gynecol Reprod Biol. 2010;153(2):188–92.CrossRef
28.
Zurück zum Zitat Fruscella E, Testa AC, Ferrandina G, De Smet F, Van Holsbeke C, Scambia G, et al. Ultrasound features of different histopathological subtypes of borderline ovarian tumors. Ultrasound Obstet Gynecol. 2005;26(6):644–50.CrossRef Fruscella E, Testa AC, Ferrandina G, De Smet F, Van Holsbeke C, Scambia G, et al. Ultrasound features of different histopathological subtypes of borderline ovarian tumors. Ultrasound Obstet Gynecol. 2005;26(6):644–50.CrossRef
29.
Zurück zum Zitat Alanbay I, Aktürk E, Coksuer H, Ercan CM, Karaşahin E, Dede M, et al. Comparison of tumor markers and clinicopathological features in serous and mucinous borderline ovarian tumors. Eur J Gynaecol Oncol. 2012;33(1):25–30.PubMed Alanbay I, Aktürk E, Coksuer H, Ercan CM, Karaşahin E, Dede M, et al. Comparison of tumor markers and clinicopathological features in serous and mucinous borderline ovarian tumors. Eur J Gynaecol Oncol. 2012;33(1):25–30.PubMed
30.
Zurück zum Zitat American College of Obstetricians and Gynecologists Committee on gynecologic practice. Committee opinion no. 477: the role of the obstetrician-gynecologist in the early detection of epithelial ovarian cancer. Obstet Gynecol. 2011;117(3):742–6.CrossRef American College of Obstetricians and Gynecologists Committee on gynecologic practice. Committee opinion no. 477: the role of the obstetrician-gynecologist in the early detection of epithelial ovarian cancer. Obstet Gynecol. 2011;117(3):742–6.CrossRef
31.
Zurück zum Zitat Redman C, Duffy S, Bromham N, Francis K. Guideline development group. Recognition and initial management of ovarian cancer: summary of NICE guidance. BMJ. 2011;342(1):d2073.CrossRef Redman C, Duffy S, Bromham N, Francis K. Guideline development group. Recognition and initial management of ovarian cancer: summary of NICE guidance. BMJ. 2011;342(1):d2073.CrossRef
32.
Zurück zum Zitat Dede M, Gungor S, Yenen MC, Alanbay I, Duru NK, Hasimi A. CA 19-9 may have clinical significance in mature cystic teratomas of the ovary. Int J Gynecol Cancer. 2006;16(1):189–93.CrossRef Dede M, Gungor S, Yenen MC, Alanbay I, Duru NK, Hasimi A. CA 19-9 may have clinical significance in mature cystic teratomas of the ovary. Int J Gynecol Cancer. 2006;16(1):189–93.CrossRef
33.
Zurück zum Zitat Bergamaschi S, Morato E, Bazzo M, Neves F, Fialho S, Castro G, et al. Tumor markers are elevated in patients with rheumatoid arthritis and do not indicate presence of cancer. Int J Rheum Dis. 2012;15(2):179–82.CrossRef Bergamaschi S, Morato E, Bazzo M, Neves F, Fialho S, Castro G, et al. Tumor markers are elevated in patients with rheumatoid arthritis and do not indicate presence of cancer. Int J Rheum Dis. 2012;15(2):179–82.CrossRef
34.
Zurück zum Zitat Emin U, Tayfun G, Cantekin I, Ozlem UB, Umit B, Leyla M. Tumor markers in mature cystic teratomas of the ovary. Arch Gynecol Obstet. 2009;279(2):145–7.CrossRef Emin U, Tayfun G, Cantekin I, Ozlem UB, Umit B, Leyla M. Tumor markers in mature cystic teratomas of the ovary. Arch Gynecol Obstet. 2009;279(2):145–7.CrossRef
35.
Zurück zum Zitat Frimer M, Seagle BL, Chudnoff S, Goldberg GL, Shahabi S. Role of elevated cancer antigen 19-9 in women with mature cystic teratoma. Reprod Sci. 2014;21(10):1307–11.CrossRef Frimer M, Seagle BL, Chudnoff S, Goldberg GL, Shahabi S. Role of elevated cancer antigen 19-9 in women with mature cystic teratoma. Reprod Sci. 2014;21(10):1307–11.CrossRef
Metadaten
Titel
Diagnostic extended usefulness of RMI: comparison of four risk of malignancy index in preoperative differentiation of borderline ovarian tumors and benign ovarian tumors
verfasst von
Shuang Zhang
Shan Yu
Wenying Hou
Xiaoying Li
Chunping Ning
Yingnan Wu
Feng Zhang
Yu Fei Jiao
Leo Tsz On Lee
Litao Sun
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Journal of Ovarian Research / Ausgabe 1/2019
Elektronische ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-019-0568-3

Weitere Artikel der Ausgabe 1/2019

Journal of Ovarian Research 1/2019 Zur Ausgabe

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.